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Abstract 

Bayesian statistics plays a pivotal role in advancing medical science by enabling healthcare companies, regulators, 
and stakeholders to assess the safety and efficacy of new treatments, interventions, and medical procedures. The 
Bayesian framework offers a unique advantage over the classical framework, especially when incorporating prior infor-
mation into a new trial with quality external data, such as historical data or another source of co-data. In recent years, 
there has been a significant increase in regulatory submissions using Bayesian statistics due to its flexibility and ability 
to provide valuable insights for decision-making, addressing the modern complexity of clinical trials where frequen-
tist trials are inadequate. For regulatory submissions, companies often need to consider the frequentist operating 
characteristics of the Bayesian analysis strategy, regardless of the design complexity. In particular, the focus is on the 
frequentist type I error rate and power for all realistic alternatives. This tutorial review aims to provide a comprehensive 
overview of the use of Bayesian statistics in sample size determination, control of type I error rate, multiplicity adjust-
ments, external data borrowing, etc., in the regulatory environment of clinical trials. Fundamental concepts of Bayes-
ian sample size determination and illustrative examples are provided to serve as a valuable resource for researchers, 
clinicians, and statisticians seeking to develop more complex and innovative designs.
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Background
Clinical trials are a critical cornerstone of modern 
healthcare, serving as the crucible in which medical 
innovations are tested, validated, and ultimately brought 
to patients [1]. Traditionally, since the 1940s, these trials 
have adhered to frequentist statistical methods, offering 
valuable insights into decision-making to demonstrate 
treatment effects. However, they may fall short in 
addressing the increasing complexity of modern clinical 

trials, such as personalized medicine [2, 3], innovative 
study designs [4, 5], and the integration of real-world 
data into randomized controlled trials [6–8], among 
many other challenges [9–11].

These new challenges commonly necessitate innova-
tive solutions. The US 21st Century Cures Act and the 
US Prescription Drug User Fee Act VI include provisions 
to advance the use of complex innovative trial designs 
[12]. Generally, complex innovative trial designs have 
been considered to refer to complex adaptive, Bayes-
ian, and other novel clinical trial designs, but there is 
no fixed definition because what is considered innova-
tive or novel can change over time [12–15]. A common 
feature of many of these designs is the need for simula-
tions rather than mathematical formulae to estimate trial 
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operating characteristics. This highlights the growing 
embrace of complex innovative trial designs in regulatory 
submissions.

In this paper, our particular focus is on Bayesian meth-
ods. Guidance from the U.S. Food and Drug Administra-
tion (FDA) [16] defines Bayesian statistics as an approach 
for learning from evidence as it accumulates. Bayesian 
methods offer a robust and coherent probabilistic frame-
work for incorporating prior knowledge, continuously 
updating beliefs as new data emerge, and quantifying 
uncertainty in the parameters of interest or outcomes for 
future patients [17]. The Bayesian approach aligns well 
with the iterative and adaptive nature of clinical decision-
making, offering opportunities to maximize clinical trial 
efficiency, especially in cases where data are sparse or 
costly to collect.

The past two decades have seen notable demonstra-
tions of Bayesian statistics addressing various types of 
modern complexities in clinical trial designs. For exam-
ple, Bayesian group sequential designs are increasingly 
used for seamless modifications in trial design and sam-
ple size to expedite the development process of drugs 
or medical devices, while potentially leveraging external 
resources [18–22]. One recent example is the COVID-19 
vaccine trial, which includes four Bayesian interim analy-
ses with the option for early stopping to declare vaccine 
efficacy before the planned trial end [23]. Other instances 
where Bayesian approaches have demonstrated their 
promise are umbrella, basket, or platform trials under 
master protocols [24]. In these cases, Bayesian adaptive 
approaches facilitate the evaluation of multiple therapies 
in a single disease, a single therapy in multiple diseases, 
or multiple therapies in multiple diseases [25–32]. More-
over, Bayesian approaches provide an effective means 
to integrate multiple sources of evidence, a particularly 
valuable aspect in the development of pediatric drugs 
or medical devices where small sample sizes can impede 
traditional frequentist approaches [33–35]. In such cases, 
Bayesian borrowing techniques enable the integration 
of historical data from previously completed trials, real-
world data from registries, and expert opinion from 
published resources. This integration provides a more 
comprehensive and probabilistic framework for informa-
tion borrowing across different sub-populations [36–39].

It is important to note that the basic tenets of good trial 
design are consistent for both Bayesian and frequentist 
trials. Sponsors using the Bayesian approach for sizing 
a trial should adhere to the principles of good clinical 
trial design and execution, including minimizing bias, 
as outlined in regulatory guidance [16, 40, 41], following 
almost the same standards as those given to frequentist 
approaches. For example, regulators often recommend 
that sponsors submit a Bayesian design that effectively 

maintains the frequentist type I and type II error rates 
(or some analog of it) at the nominal levels for all realistic 
scenarios by carefully calibrating design parameters.

In the literature, numerous articles [13, 42–47] and 
textbooks [17, 48] extensively cover both basic and 
advanced concepts of Bayesian designs. While several 
works focus on regulatory issues in developing Bayes-
ian designs [49–51], there seems to be a lack of tutorial-
type review papers explaining how to develop Bayesian 
designs for regulatory submissions within the evolving 
regulatory environment, along with providing tutorial-
type examples. Such papers are crucial for sponsors, 
typically pharmaceutical or medical device companies, 
preparing to use Bayesian designs to gain insight and 
build more complex Bayesian designs.

In this paper, we provide a pedagogical understand-
ing of Bayesian designs by elucidating key concepts and 
methodologies through illustrative examples and address 
the existing gaps in the literature. For the simplicity of 
explanation, we apply Bayesian methods to construct sin-
gle-stage designs, two-stage designs, and parallel designs 
for single-arm trials, but the illustrated key design prin-
ciples can be generalized to multiple-arm trials. Spe-
cifically, our focus in this tutorial is on Bayesian sample 
size determination, which is most useful in confirmatory 
clinical trials, including late-phase II or III trials in the 
drug development process or pivotal trials in the medical 
device development process. We highlight the advantages 
of Bayesian designs, address potential challenges, exam-
ine their alignment with evolving regulatory science, and 
ultimately provide insights into the use of Bayesian statis-
tics for regulatory submissions.

This tutorial paper is organized as follows. Figure 1 dis-
plays the diagram of the paper organization. We begin 
by explaining a simulation-based approach to determine 
the sample size of a Bayesian design in Sizing a Bayes-
ian trial  section, which is consistently used through-
out the paper as the building blocks to develop many 
kinds of Bayesian designs. Next, the specification of the 
prior distribution for Bayesian submission is discussed 
in Specification of prior distributions  section, and two 
important Bayesian decision rules, namely, the poste-
rior probability approach and the predictive probabil-
ity approach, are illustrated in Decision rule - posterior 
probability approach and Decision rule - predictive prob-
ability approach sections, respectively. These are essential 
in the development of Bayesian designs for regulatory 
submissions. Advanced design techniques for multiplic-
ity adjustment using Bayesian hierarchical modeling 
are illustrated in Multiplicity adjustments  section, and 
incorporating external data using power prior modeling 
is explained in External data borrowing section. We con-
clude the paper with a discussion in Conclusions section.
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Sizing a Bayesian trial
A simulation principle of Bayesian sample size 
determination
Although practical and ethical issues need to be con-
sidered, one’s initial reasoning when determining the 
trial size should focus on the scientific requirements 
[52]. Scientific requirements refer to the specific crite-
ria, conditions, and standards that must be met in the 
design, conduct, and reporting of scientific research to 
ensure the validity, reliability, and integrity of the find-
ings. Much like frequentist approaches for determining 
the sample size of the study [53], its Bayesian counter-
part also proceeds by first defining a success criterion 
to align with the primary objective of the trial. Subse-
quently, the number of subjects is determined to pro-
vide a reliable answer to the questions addressed within 
regulatory settings.

In the literature, various studies have explored the siz-
ing of Bayesian trials [54–60]. Among these, the sim-
ulation-based method proposed by [60] stands out as 
popular, and it was further explored by [61, 62] for prac-
tical applications. This method is widely used by many 
healthcare practitioners, including design statisticians 
at companies or universities, for its practical applicabil-
ity in a broad range of Bayesian designs. Furthermore, 
this method, with a particular prior setting, is well-suited 
for the regulatory submission, where the evaluation of 
the frequentist operating characteristics of the Bayesian 
design is critical. This will be discussed in Calibration 
of Bayesian trial design to assess frequentist operating 
characteristics section.

In this section, we outline the framework of the 
authors’ work [60]. Similar to the notation in Reference 
[63] assume that the endpoint has probability density 
function f (y|θ) , where the θ ∈ � represents the param-
eter of main interest. The hypotheses to be investigated 
are the null and alternative hypotheses,

where �0 and �a represent the disjoint parameter spaces 
for the null and alternative hypotheses, respectively. 
� = �0 ∪�a denotes the entire parameter space. Sup-
pose that the objective of the study is to evaluate the 
efficacy of a new drug, achieved by rejecting the null 
hypothesis. Let yN = (y1, · · · , yN )⊤ denotes a set of N 
outcomes such that yi ( i = 1, · · · ,N  ) is identically and 
independently distributed according a distribution f (y|θ)
.

Throughout the paper, we assume that the parame-
ter space � is a subset of real numbers. The range of the 
parameter space � is determined by the type of outcomes. 
For example, for continuous outcomes y, the distribution 
f (y|θ) may be a normal distribution, where the parameter 
space is the set of real numbers, � = R ; and for binary out-
comes, the distribution f (y|θ) is the Bernoulli distribution, 
where the parameter space is the set of fractional numbers, 
� = [0, 1] . In this formulation, typically, the hypotheses (1) 
are one-sided; for example, H0 : θ ≤ θ0 versus Ha : θ > θ0 
or H0 : θ ≥ θ0 versus Ha : θ < θ0 . Throughout the paper, 
when we denote hypotheses in the abstract form (1), it 
is considered a one-sided superiority test for the coher-
ency of the paper. The logic explained in this paper can be 

(1)H0 : θ ∈ �0 versusHa : θ ∈ �a,

Fig. 1  Topics, key concepts, and organization of paper
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generalized to a form of a two-sided test, non-inferiority 
test, or equivalence test in a similar manner, but discussion 
on these forms is out of scope for this paper.

The simulation-based approach incorporates two essen-
tial components: the ‘sampling prior’ πs(θ) and the ‘fitting 
prior’ πf (θ) . The sampling prior is utilized to generate 
observations yN by considering the scenario of ‘what if 
the parameter θ is likely to be within a specified portion 
of the parameter space?’ The fitting prior is employed to 
fit the model once the data yN has been obtained upon 
completion of the study. We note that the sampling prior 
should be a proper distribution, while the fitting prior does 

not need to be proper as long as the resulting posterior, 
π(θ |yN ) ∝ f (yN |θ) · πf (θ) , is proper. We also note that the 
sampling prior is a unique Bayesian concept adopted in the 
simulation-based approach, whereas the fitting prior refers 
to the prior distributions used in the daily work of Bayesian 
data analyses [64], not confined to the context of sample 
size determination.

In the following, we illustrate how to calculate the Bayes-
ian test statistic, denoted as T (yN ) , using the posterior 
probability approach by using a sampling prior and a fit-
ting prior. (Details of the posterior probability approach 
will be explained in Decision rule - posterior probability 
approach section). First, one generates a value of parameter 
of interest θ from the sampling prior πs(θ) , and then gener-
ates the outcome vector yN = (y1, · · · , yN )⊤ based on that θ . 

This process produces N outcomes yN from its prior predic-
tive distribution (also called, marginal likelihood function)

After that, one calculates the posterior distribution of θ 
given the data yN , which is

Eventually, a measure of evidence to reject the null 
hypothesis is summarized by the Bayesian test statistics, 
the posterior probability of the alternative hypothesis being 
true given the observations yN , which is

(2)yN ∼ fs(yN ) =
∫

f (yN |θ)πs(θ)dθ .

(3)πf (θ |yN ) =
f (yN |θ)πf (θ)∫
f (yN |θ)πf (θ)dθ

.

where the indicator function 1{A} is 1 if A is true and 0 
otherwise. A typical success criterion takes the form of

where � ∈ [0, 1] is a pre-specified threshold value.
At this point, we introduce a key quantity to meas-

ure the expected behavior of the Bayesian test statistics 
T (yN ) – the probability of study success based on the 
Bayesian testing procedure – by considering the idea of 
repeated sampling of the outcomes yN ∼ fs(yN ):

In the notation β(N )
�  (5), the superscript ‘N’ indicates 

the dependence on the sample size N, and the subscript 
‘ � ’ represents the support of the sampling prior πs(θ) . 
Note that in the Eq.  (5), the probability inside of 1{A} 
(that is, Pf [·] ) is computed with respect to the posterior 
distribution πf (θ |yN ) (3) under the fitting prior, while the 
probability outside (that is, Ps[·] ) are taken with respect 
to the marginal distribution fs(yN ) (2) under the sam-
pling prior. Note that the value β(N )

�  (5) also depends on 
the choice of the threshold ( � ), the parameter spaces cor-
responding to the null and alternative hypothesis ( �0 and 
�a ), and the sampling and fitting priors ( πs(θ) and πf (θ)).

Monte Carlo simulation is employed to approximate 
the value of β(N )

�  (Eq. 5) in cases where it is not expressed 
as a closed-form formula:

where R is the number of simulated datasets. When 
Monte Carlo simulation is used for regulatory submis-
sion in a Bayesian design to estimate the expected behav-
ior of the Bayesian test statistics T (yN ) , typically, one 
uses R = 10, 000 or 100, 000 and also reports a 95% con-
fidence interval for β(N )

�  to describe the precision of the 
approximation. Often, for complex designs, computing 
the Bayesian test statistic T (yN ) = Pf [θ ∈ �a|yN ] itself 
requires the use of Markov Chain Monte Carlo (MCMC) 
sampling techniques, such as the Gibbs sampler or 
Metropolis-Hastings algorithm [65–67]. In such cases, 
a nested simulation technique is employed to approxi-
mate β(N )

�  (5) (Algorithm  1 in Supplemental material). 
It is important to note that when MCMC techniques 
are used, regulators recommend sponsors check the 

T (yN ) = Pf [θ ∈ �a|yN ] = 1{θ ∈ �a}πf (θ |yN )dθ ,

(4)Study Sucess = 1{T (yN ) > �} = 1{Pf [θ ∈ �a|yN ] > �},

(5)
β
(N )
� = Ps[T (yN ) > �|yN ∼ fs(yN )] =

∫
1{Pf [θ ∈ �a|yN ] > �}fs(yN )dyN .

β̂
(N )
� ≈ 1

R

R∑
r=1

1{Pf [θ ∈ �a|y(r)N ] > �}, y
(r)
N ∼ fs(yN ), (r = 1, · · · ,R),
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convergence of the Markov chain to the posterior distri-
bution [16], using various techniques to diagnose non-
convergence [64, 65].

Now, we are ready to apply the above concept to Bayes-
ian sample size determination. We consider two differ-
ent populations from which the random sample of N 
observations yN may have been drawn, with one popu-
lation corresponding to the null parameter space �0 and 
another population corresponding to the alternative 
parameter space �a – similar to Neyman & Pearson’s 
approach (based on hypothesis testing and type I and II 
error rates) [68].

This can be achieved by separately considering two 
scenarios: ‘what if the parameter θ is likely to be within a 
specified portion of the null parameter space?’ and ‘what 
if the parameter θ is likely to be within a specified portion 
of the alternative parameter space?’ Following notations 
from [62], let �̄0 and �̄a denote the closures of �0 and �a , 
respectively. In this formulation, the null sampling prior 
πs0(θ) is the distribution supported on the boundary 
�B = �̄0 ∩ �̄a , and the alternative sampling prior πs1(θ) 
is the distribution supported on the set �∗

a ⊂ �a . For a 
one-sided test, such as H0 : θ ≤ θ0 versus Ha : θ > θ0 , 
one may choose the null sampling prior πs0(θ) as a point-
mass distribution at θ0 , and the alternative sampling prior 
πs1(θ) as a distribution supported on �∗

a ⊂ (θ0,∞).
Eventually, for a given α > 0 and β > 0 , the Bayesian 

sample size is the value

where β(N )
�B

 and β(N )
�∗

a
 are given in (5) corresponding to 

πs(θ) = πs0(θ) and πs(θ) = πs1(θ) , respectively. The 
values of β(N )

�B
 and β(N )

�∗
a

 are referred to as the Bayes-
ian type I error and power, while 1− β

(N )
�∗

a
 is referred to 

as the Bayesian type II error. The sample size N satisfy-
ing the condition β(N )

�B
≤ α meets the Bayesian type I 

error requirement. Similarly, the sample size N satisfy-
ing the condition β(N )

�∗
a

≥ 1− β meets the Bayesian Power 
requirement. Eventually, the selected sample size N (6) 
is the minimum value that simultaneously satisfies the 

(6)N = max

(
min{N : β(N )

�B
≤ α}, min{N : β(N )

�∗
a

≥ 1− β}
)
,

Bayesian type I error and power requirement. Typical 
values for α are 0.025 for a one-sided test and 0.05 for a 
two-sided test, and β is typically set to 0.1 or 0.2 regard-
less of the direction of the alternative hypothesis [16].

Figure 2 provides a flowchart illustrating the process of 
Bayesian sample size determination. We explain the prac-
tical algorithm for selecting an optimal Bayesian sam-
ple size N (6), subject to the maximum sample size Nmax 
– typically chosen under budgetary limits. To begin, we 
consider a set of K candidate sample sizes, denoted as 
N = {Nk; k = 1, . . . ,K ,Nk < Nk+1, ,NK = Nmax} . Often, 
one may include the frequentist sample size as a reference.

The process commences with the evaluation of the small-
est sample size, N1 , checking whether it meets the Bayes-
ian type I error and power requirements, i.e., β(N1)

�B
≤ α 

and β(N1)
�∗

a
≥ 1− β . To that end, we independently gen-

erate N1 outcomes, yN1 , from the marginal distributions 
fs0(yN1) and fs1(yN1) , which are based on the null and 
alternative sampling priors πs0(θ) and πs1(θ) , respectively. 
The data drawn in this manner corresponds to the type I 
error and power scenarios, respectively. Subsequently, we 
independently compute the Bayesian test statistics, T (yN1) , 
using the common fitting prior πf (θ) , and record the test-
ing results, whether it rejects the null hypothesis or not, 
1{T (yN1) > �} (4) for each scenario. By repeating this pro-
cedure R times (for example, R = 10, 000 ), we can estimate 
the expected behaviors of the Bayesian test statistics β(N1)

�B
 

and β(N1)
�∗

a
 through Monte-Carlo approximation and evalu-

ate whether the size N1 meets both Bayesian type I error 
and power requirements. If these requirements are met, 
then N1 is deemed the Bayesian sample size for the study. 
If not, we evaluate the next sample size, N2 , and reassess 
its suitability for meeting the requirements. This pro-
cess continues until we identify the Bayesian sample size 
meeting the requirements within the set N  . If it cannot be 
found within this set N  , it may be necessary to explore a 
broader range of candidate sizes, adjust the values of α and 
β under regulatory consideration, modify the threshold � , 
or consider other potential modifications such as changing 
the hyper-parameters of the fitting prior.

Fig. 2  Flow chart of Bayesian sample size determination within the collection of possible sizes of Bayesian trial N = {Nk; k = 1, · · · , K ,Nk < Nk+1}
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It is evident that Bayesian sample size determination is 
computationally intensive. It becomes even more intense 
when the complexity of the design increases. For instance, 
one needs to consider factors like the number and timing 
of interim analyses for Bayesian group sequential design, 
as well as the number of sub-groups and ratios in Bayesian 
platform design. Moreover, the computational complexity 
increases when the Bayesian test statistic requires MCMC 
sampling, as the convergence of the Markov chain should 
be diagnosed for each iteration within the Monte Carlo 

simulation. In such scenarios, the use of parallel computa-
tion techniques or modern sampling schemes can signifi-
cantly reduce computation time [69, 70].

Calibration of Bayesian trial design to assess frequentist 
operating characteristics
Scientifically sound clinical trial planning and rigorous 
trial conduct are important, regardless of whether trial 
sponsors use a Bayesian or frequentist design. Maintain-
ing some degree of objectivity in the interpretation of 
testing results is key to achieving scientific soundness. The 
central question here is how much we can trust a testing 
result based on a Bayesian hypothesis testing procedure, 
which is driven by the Bayesian type I error and power in 
the planning phase. More specifically, suppose that such a 
Bayesian test, where the threshold of the decision rule was 
chosen to meet the Bayesian type I error rate of less than 
0.025 and power greater than 0.8, yielded the rejection of 
the null hypothesis, while a frequentist test did not upon 
completion of the study. Then, can we still use the result 
of the Bayesian test for registration purposes? Perhaps, 
this can be best addressed by calculating the frequentist 
type I error and power of the Bayesian test during the 
planning phase so that the Bayesian test can be compared 
with some corresponding frequentist test in an apple-to-
apple comparison, or as close as possible.

In most regulatory submissions, Bayesian trial designs 
are ‘calibrated’ to possess good frequentist properties. 
In this spirit, and in adherence to regulatory practice, 
regulatory agencies typically recommend that sponsors 
provide the frequentist type I and II error rates for the 
sponsor’s proposed Bayesian analysis plan [16, 71].

The simulation-based approach for Bayesian sample 
size determination [60], as illustrated in A simulation 
principle of Bayesian sample size determination section, 
is calibrated to measure the frequentist operating char-
acteristics of a Bayesian trial design if the null sampling 
prior is specified by a Dirac measure with the point-mass 
at the boundary value of the null parameter space �0 (i.e., 

πs0(θ) = δ(θ0) for some θ0 ∈ �B = �̄0 ∩ �̄a where δ(x) is 
the Direc-Delta function), and the alternative sampling 
prior is specified by a Dirac measure with the point-mass 
at the value inducing the minimally detectable treat-
ment effect, representing the smallest effect size (i.e., 
πs1(θ) = δ(θa) for some θa ∈ �∗

a ⊂ �a).
In this calibration, the expected behavior of the Bayes-

ian test statistics T (yN ) = Pf [θ ∈ �a|yN ] can be repre-
sented as the frequentist type I error and power of the 
design as follow:

Throughout the paper, we interchangeably use the 
notations Pθ [·] and P[·|yN ∼ f (yN |θ)] . The former nota-
tion is simpler, yet it omits specifying which values are 
being treated as random and which are not; hence, the 
latter notation is sometimes more convenient for Bayes-
ian computation.

With the aforementioned calibration, the prior speci-
fication problem of the Bayesian design essentially 
boils down to the choice of the fitting prior πf (θ) . This 
is because the selection of the null and alternative sam-
pling prior is essentially determined by the formulation 
of the null and alternative hypotheses, aligning with the 
frequentist framework. In other words, the fitting prior 
provides the unique advantage of Bayesian design by 
incorporating prior information about the parameter θ , 
which is then updated by Bayes’ theorem, leading to the 
posterior distribution. The choice of the fitting prior will 
be discussed in Specification of prior distributions  sec-
tion. In what follows, to avoid notation clutter, we omit 
the subscript ‘f’ in the notation of the fitting prior πf (θ).

Example ‑ standard single‑stage design based 
on beta‑binomial model
Suppose a medical device company aims to evaluate the 
primary safety endpoint of a new device in a pivotal trial. 
The safety endpoint is the primary adverse event rate 
through 30 days after a surgical procedure involving the 
device. The sponsor plans to conduct a single-arm study 
design in which patient data is accumulated throughout 
the trial. Only once the trial is complete, the data will 
be unblinded, and the pre-planned statistical analyses 
will be executed. Suppose that the null and alternative 
hypotheses are: H0 : θ ≥ θ0 versus Ha : θ < θ0 . Here, 
θ0 represents the performance goal of the new device, a 
numerical value (point estimate) that is considered suffi-
cient by a regulator for use as a comparison for the safety 
endpoint. It is recommended that the performance goal 

(7)Type I error : β(N )
θ0

= P[T (yN ) > �|yN ∼ f (yN |θ0)] = Pθ0 [T (yN ) > �],

(8)
Power : β(N )

θa
= P[T (yN ) > �|yN ∼ f (yN |θa)] = Pθa [T (yN ) > �].
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not originate from a particular sponsor or regulator. It is 
often helpful if it is recommended by a scientific or medi-
cal society [72].

A fundamental regulatory question is “when a device 
passes a safety performance goal, does that provide evi-
dence that the device is safe?”. To answer this question, the 
sponsor sets a performance goal by θ0 = 0.12 , and antici-
pates that the safety rate of the new device is θa = 0.05 . The 
objective of the study is, therefore, to detect a minimum 
treatment effect of 7% = 12%− 5% in reducing the adverse 
event rate of patients treated with the new medical device 
compared to the performance goal. The sponsor targeted 
to achieve a statistical power of 1− β = 0.8 with the one-
sided level α = 0.025 test of a proposed design. The trial is 
successful if the null hypothesis H0 is rejected after observ-
ing the outcomes from N patients upon completion of the 
study.

The following Bayesian design is considered:

•	 One-sided significance level: α = 0.025,
•	 Power: 1− β = 0.8,
•	 Null sampling prior: πs0(θ) = δ(θ0) , where θ0 = 0.12,
•	 Alternative sampling prior: πs1(θ) = δ(θa) , where 

θa = 0.05,
•	 Prior: θ ∼ π(θ) = Beta(θ |a, b),
•	 Hyper-parameters: a > 0 and b > 0,
•	 Likelihood: yi ∼ f (y|θ) = Bernoulli(y|θ), (i = 1, · · · ,N ),
•	 Decision rule: Reject null hypothesis if 

T (yN ) = P[θ < θ0|yN ] > 0.975.

Under the setting, (frequentist) type I error and power of 
the Bayesian design can be expressed as:

β
(N )
θ0

= Pθ0 [P[θ < θ0|yN ] > 0.975] =
∫

1(P[θ < θ0|yN ] > 0.975) ·
N∏
i=1

θ
yi
0 (1− θ0)

1−yidyN ,

β
(N )
θa

= Pθa [P[θ < θ0|yN ] > 0.975] =
∫

1(P[θ < θ0|yN ] > 0.975) ·
N∏
i=1

θ
yi
a (1− θa)

1−yidyN .

Here, the integral expression ( 
∫
· ) can be further simpli-

fied to summation expression ( 
∑

· ) by using a binomial dis-
tribution, similar to [73].

The Bayesian sample size satisfying the type I & II error 
requirements are then

Due the conjugate relationship between the binomial 
distribution and beta prior, the posterior distribution is 
the beta distribution, π(θ |yN ) = Beta(x + a,N − x + b) 
such that x =

∑N
i=1 yi . Therefore, the Bayesian test sta-

tistics T (yN ) = P[θ < θ0|yN ] can be represented as a 
closed-form in this case.

We consider N = 100, 150, and 200 as the possible sizes 
for the Bayesian trial. We evaluate three prior options: 
(1) a non-informative prior with a = b = 1 (prior mean 
is 50%), (2) an optimistic prior with a = 0.8 and b = 16 
(prior mean is 4.76%), and (3) a pessimistic prior with 
a = 3.5 and b = 20 (prior mean is 14.89%). An optimis-
tic prior assigns a probability mass that is favorable for 
rejecting the null hypothesis before observing any new 
outcomes, while a pessimistic prior assigns a probability 
mass that is favorable for accepting the null hypothesis 
before observing any new outcomes. As a reference, we 
consider a frequentist design in which the decision cri-
terion is determined by the p-value associated with the 
z-test statistic, Z = (x/N − θ0)/

√
θ0(1− θ0)/N  , being 

less than the one-sided significance level of α = 0.025 to 
reject the null hypothesis.

Table 1 shows the results of the power analysis obtained 
by simulation. Designs satisfying the requirement of type 

N = max(min{N : β(N )
θ0

≤ 0.025}, min{N : β(N )
θa

≥ 0.8}).

Table 1  Frequentist operating characteristics of Bayesian designs with different prior options

Note: Bayesian designs are based on the beta-binomial models with prior options: (1) a non-informative prior with a = b = 1 , (2) an optimistic prior with a = 0.8 and 
b = 16 , and (3) a pessimistic prior with a = 3.5 and b = 20

Bayesian Design (Non-
informative prior)

Bayesian Design (Optimistic 
prior)

Bayesian Design (Pessimistic 
prior)

Frequentist Design 
(Z-test statistics)

Sample Size (N) Type I Error Power Type I Error Power Type I Error Power Type I Error Power

100 0.0148 0.6181 0.0755 0.8767 0.0148 0.6181 0.0155 0.6214

150 0.0231 0.8690 0.0448 0.9268 0.0114 0.7838 0.0242 0.8690
200 0.0164 0.9184 0.0467 0.9767 0.0164 0.9184 0.0158 0.9231
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I error ≤ 2.5% and power ≥ 80%, are highlighted in bold 
in the table. The results indicate that the operating char-
acteristics of the Bayesian design based on a non-inform-
ative prior are very similar to those obtained using the 
frequentist design. This similarity is typically expected 
because a non-informative prior has minimal impact on 
the posterior distribution, allowing the data to play a sig-
nificant role in determining the results.

The results show that the Bayesian design based on an 
optimistic prior tends to increase power at the expense 
of inflating the type I error. Technically, the inflation is 
expected because, by definition, the type I error is eval-
uated by assuming the true treatment effect is null (i.e. 
θ = θ0 ), then it is calculated under a scenario where the 
prior is in conflict with the null treatment effect, resulting 
in the inflation of the type I error. In contrast, the Bayes-
ian design based on a pessimistic prior tends to decrease 
the type I error at the cost of deflating the power. The 
deflation is expected because, by definition, the power is 
evaluated by assuming the true treatment effect is alter-
native (i.e. θ = θa ), then it is calculated under a scenario 
where the prior is in conflict with the alternative treat-
ment effect, resulting in the deflation of the power.

Considering the trade-off between power and type I 
error, which is primarily influenced by the prior specifica-
tion, thorough pre-planning is essential for selecting the 
most suitable Bayesian design on a case-by-case basis for 
regulatory submission. Particularly, when historical data 
is incorporated into the hyper-parameter of the prior as 
an optimistic prior, there may be inflation of the type I 
error rate, even after appropriately discounting the his-
torical data [74]. In such cases, it may be appropriate to 
relax the type I error control to a less stringent level com-
pared to situations where no prior information is used. 
This is because the power gains from using external prior 
information in clinical trials are typically not achievable 
when strict type I error control is required [75, 76]. Refer 
to Section 2.4.3 in [77] for relevant discussion. The extent 
to which type I error control can be relaxed is a case-by-
case decision for regulators, depending on various fac-
tors, primarily the confidence in the prior information 
[16]. We discuss this in more detail by taking the Bayes-
ian borrowing design based on a power prior [36] as an 
example in External data borrowing section.

Numerical approximation of power function
In this subsection, we illustrate a numerical method to 
approximate the power function of a Bayesian hypoth-
esis testing procedure. The power function of a test pro-
cedure is the probability of rejecting the null hypothesis, 
with the true parameter value as the input. The power 
function plays a crucial role in assessing the ability of 

a statistical test to detect a true effect or relationship 
between the design parameters. Visualizing the power 
function over the parameter space, as provided by many 
statistical software (SAS, PASS, etc), is helpful for trial 
sizing because it displays the full spectrum of the behav-
ior of the testing procedure. Understanding such behav-
iors is crucial for regulatory submission, as regulators 
often recommend simulating several likely scenarios and 
providing the expected sample size and estimated type I 
error for each case.

Consider the null and alternative hypotheses, 
H0 : θ ∈ �0 versus Ha : θ ∈ �a , where � = �0 ∪�a , 
and �0 and �a are disjoint. Let outcomes yi ( i = 1, · · · ,N  ) 
be identically and independently distributed accord-
ing to a density f (y|θ) . Given a Bayesian test statistics 
T (yN ) , suppose that a higher value of T (yN ) raises more 
doubt about the null hypothesis being true. We reject the 
null hypothesis if T (yN ) > � , where � is a pre-specified 
threshold. Then, the power function ψ : � → [0, 1] is 
defined as follows:

Eventually, one needs to calculate ψ(θ) over the entire 
parameter space � to explore the behavior of the test-
ing procedure. However, the value of ψ(θ) is often not 
expressed as a closed-form formula, mainly due to two 
reasons: no explicit formula for the outside integral Pθ [·] 
or the Bayesian test statistics T (yN ) . Thus, it is often 
usual that the value of ψ(θ) is approximated through a 
nested simulation strategy. See Algorithm  1  in Supple-
mental material. The idea of the Algorithm 1 is that the 
outside integral in (9) is approximated by a Monte-Carlo 
simulation (with R number of replicated studies), and the 
test statistics is approximated by Monte-Carlo or Markov 
Chain Monte-Carlo simulation (with S number of poste-
rior samples) when the test statistics are not expressed in 
closed form. It is important to note that this approxima-
tion is exact in the sense that if R and S go to infinity, then 
ψ̃(θ) converges to the truth ψ(θ) . This contrasts with the 
formulation of the power functions of many frequentist 
tests, which are derived based on some large sample the-
ory [78], to induce a closed-form formula.

Specification of prior distributions
Classes of prior distributions
The prior distributions for regulatory submissions 
can be broadly classified into non-informative pri-
ors and informative priors. A non-informative prior 
is a prior distribution with no preference for any spe-
cific parameter value. A Bayesian design based on a 

(9)

ψ(θ) = Pθ [T (yN ) > �] = P[T (yN ) > �|yN ∼ f (y|θ)]

=
∫

1{T (yN ) > �}
n∏

i=1

f (yi|θ)dyN .
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non-informative prior leads to objective statistical infer-
ence, resembling frequentist inference, and is therefore 
the least controversial. It is important to note that choos-
ing a non-informative prior distribution can sometimes 
be challenging, either because there may be more than 
one way to parameterize the problem or because there 
is no clear mathematical justification for defining non-
informativeness. [79] reviews the relevant literature but 
emphasizes the continuing difficulties in defining what is 
meant by ‘non-informative’ and the lack of agreed refer-
ence priors in all but simple situations.

For example, in the case of a beta-binomial model (as 
illustrated in Calibration of Bayesian trial design to assess 
frequentist operating characteristics  section), choices 
such as Beta(1, 1) , Beta(0.5, 0.5) , Beta(1/3, 1/3) , or 
Beta(0.001, 0.001) could all be used as non-informative 
priors. Refer to Subsection 5.5.1 of [17] and the paper by 
[80] for a relevant discussion. In Bayesian hierarchical 
models, the mathematical meaning of a non-informative 
prior distribution is not obvious due to the complex-
ity of the model. In those cases, we typically set the rel-
evant hyper-parameters to diffuse the prior evenly over 
the parameter space and minimize the prior information 
as much as possible, leading to a nearly non-informative 
prior.

On the other hand, an informative prior is a prior 
distribution that expresses a preference for a particu-
lar parameter value, enabling the incorporation of prior 
information. Informative priors can be further catego-
rized into two types: prior distributions based on empiri-
cal evidence from previous trials and prior distributions 
based on personal opinions, often obtained through 
expert elicitation. The former class of informative priors 
is less controversial when the current and previous trials 
are similar to each other. Possible sources of prior infor-
mation include: clinical trials conducted overseas, patient 
registries, clinical data on very similar products, and pilot 
studies. Recently, there has been breakthrough devel-
opment of informative prior distribution that enables 
incorporating the information from previous trials, and 
eventually reducing sample size of a new trial, while pro-
viding appropriate mechanism of discounting [81–84]. 
We provide details on the formulation of an informative 
prior and relevant regulatory considerations in Exter-
nal data borrowing  section. Typically, informative prior 
distribution based on personal opinions is not recom-
mended for Bayesian submissions due to subjectivity and 
controversy [85].

Incorporating prior information formally into the 
statistical analysis is a unique feature of the Bayesian 
approach but is also often criticized by non-Bayesians. 
To mitigate any conflict and skepticism regarding prior 
information, it is crucial that sponsors and regulators 

meet early in the process to discuss and agree upon the 
prior information to be used for Bayesian clinical trials.

Prior probability of the study claim
The prior predictive distribution plays a key role in pre-
planning a Bayesian trial to measure the prior proba-
bility of the study claim – the probability of the study 
claim before observing any new data. Regulators rec-
ommend that this probability should not be excessively 
high, and what constitutes ‘too high’ is a case-by-case 
decision [16]. Measuring this probability is typically 
recommended when an informative prior distribution 
is used for the Bayesian submission. Regulatory agen-
cies make this recommendation to ensure that prior 
information does not overwhelm the data of a new 
trial, potentially creating a situation where unfavora-
ble results from the proposed study get masked by a 
favorable prior distribution. In an evaluation of the 
prior probability of the claim, regulators will balance 
the informativeness of the prior against the efficiency 
gain from using prior information, as opposed to using 
noninformative priors.

To calculate the prior probability of the study claim, we 
simulate multiple hypothetical trial data using the prior 
predictive distribution (2) by setting the sampling prior 
as the fitting prior, and then calculate the probability of 
rejecting the null hypothesis based on the simulated 
data. We illustrate the procedure for calculating this 
probability using the beta-binomial model illustrated in 
Calibration of Bayesian trial design to assess frequentist 
operating characteristics section as an example. First, we 
generate the data (yN )(r) ∼ f (yN ) =

∫
f (yN |θ)π(θ)dθ 

( r = 1, · · · ,R ), where R represents the number of simula-
tions. Here, f is the Bernoulli likelihood, and π is the beta 
prior with hyper-parameters a and b. In this particular 
example, a and b represent the number of hypothetical 
patients showing adverse events and not showing adverse 
events a priori, hence a+ b is the prior effective sample 
size. The number of patients showing adverse events out 
of N patients, X (r) =

∑N
i=1 y

(r)
i  , is distributed according to 

a beta-binomial distribution [86], denoted as X (r) ∼ Beta

-Binom(N , a, b) . One can use a built-in function 
rbetabinom.ab(·) within the R package VGAM to gener-
ate the r-th outcome X (r) . Second, we compute the pos-
terior probability and make a decision whether to reject 
the null or not, i.e., d(r) = 1{P[θ < θ0|y(r)N ] > 0.975} = 1 
if H0 is rejected and 0 otherwise. Finally, the value of ∑R

r=1 d(r)/R is the prior probability of the study claim 
based on the prior choice of θ ∼ π(θ) = Beta(θ |a, b).

We consider four prior options where the hyper-param-
eters have been set to induce progressively stronger prior 
information to reject the null a priori. Table  2 shows 
the results of the calculations of this probability. For the 
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non-informative prior, the prior probability of the study 
claim is only 5.8%, implying that the outcome from a new 
trial will most likely dominate the final decision. How-
ever, the third and fourth options provide probabilities 
greater than 50%, indicating overly strong prior informa-
tion; hence, appropriate discounting on the prior effec-
tive sample size is recommended.

Decision rule ‑ posterior probability approach
Posterior probability approach
The central motivation for utilizing the posterior prob-
ability approach in decision-making is to quantify the 
evidence to address the question, “Does the current data 
provide convincing evidence in favor of the alternative 
hypothesis?” The key quantity here is the posterior prob-
ability of the alternative hypothesis being true based on 
the data observed up to the point of analysis. This Bayes-
ian tail probability can be used as the test statistic in a 
single-stage Bayesian design upon completion of the 
study, similar to the role of the p-value in a single-stage 
frequentist design [77]. Furthermore, one can measure 
it in both interim and final analyses within the context 
of Bayesian group sequential designs [19, 46], akin to a 
z-score in a frequentist group sequential design [87, 88].

It is important to note that if the posterior probability 
approach is used in decision-making at the interim analy-
sis, it does not involve predicting outcomes of the future 
remaining patients. This distinguishes it from the predic-
tive probability approach, where the remaining time and 
statistical information to be gathered play a crucial role 
in decision-making at the interim analysis (as discussed 
in Decision rule - predictive probability approach  sec-
tion). Consequently, the posterior probability approach 
is considered conservative, as it may prohibit imputa-
tion for incomplete data or partial outcomes. For this 
reason, the posterior probability approach is standardly 
employed in interim analyses to declare early success or 
in the final analysis to declare the trial’s success to sup-
port marketing approval of medical devices or drugs in 
the regulatory submissions [23, 89].

Suppose that y denotes an analysis dataset, and θ is 
the parameter of main interest. A sponsor wants to test 
H0 : θ ∈ �0 versus Ha : θ ∈ �a , where � = �0 ∪�a , 

and �0 and �a are disjoint. Bayesian test statistics follow-
ing the posterior probability approach can be represented 
as a functional F{·} : Qθ |y → [0, 1] , such that:

where Qθ |y represents the collection of posterior distribu-
tions. Finally, to induce a dichotomous decision, we need 
to pre-specify the threshold � ∈ [0, 1] . By introducing an 
indicator function ϕ (referred as a ‘critical function’ in 
[63]), the testing result is determined as follow:

where 1 and 0 indicate the rejection and acceptance of 
the null hypothesis, respectively.

In the interim analysis, rejecting the null can be inter-
preted as claiming the early success of the trial, and in 
the final analysis, rejecting the null can be interpreted 
as claiming the final success of the trial. Figure  3 dis-
plays a pictorial description of the decision procedure.

The formulation of Bayesian test statistics is univer-
sal regardless of the hypothesis being tested (e.g., mean 
comparison, proportion comparison, association), and 
it does not rely on asymptotic theory. The derivation 
procedure for Bayesian test statistics based on the pos-
terior probability approach is intuitive, considering the 
backward process of the Bayesian theorem. A higher 
value of T (y) = P[θ ∈ �a|y] implies that more mass has 
been concentrated on the alternative parameter space 
�a a posteriori. Consequently, there is a higher prob-
ability that the data were originally generated from the 
density indexed with parameters belonging to �a , that 
is, y ∼ f (y|θ) , θ ∈ �a . The prior distribution in this 
backward process acts as a moderator by appropriately 
allocating even more or less mass on the parameter 
space � before seeing any data y . If there is no prior 
information, the prior distribution plays a minimal role 
in this process.

This contrasts with the derivation procedure for 
frequentist test statistics, which involves formulat-
ing a point estimator such as sufficient statistics from 

(10)
F{π(θ |y)} = T (y) = P[θ ∈ �a|y] =

∫
1(θ ∈ �a) · π(θ |y)dθ ,

ϕ(y) =
{
1 if F{π(θ |y)} = P[θ ∈ �a|y] > �

0 if F{π(θ |y)} = P[θ ∈ �a|y] ≤ �,

Table 2  Prior probability of the study claim based on beta-binomial model

Prior Distribution Number of hypothetical patients 
showing adverse events

Number of hypothetical patients 
not showing adverse events

Prior mean (standard 
deviation)

Prior probability 
of a study claim

Beta(1, 1) 1 1 50% (5.8%) 5.8%

Beta(1, 9) 1 9 10% (9%) 47.1%

Beta(1, 19) 1 19 5% (4.9%) 77.3%

Beta(1, 49) 1 49 2% (2%) 99.1%
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the sample data to make a decision about a specific 
hypothesis. The derivation may vary depending on the 
type of test (e.g., t-test, chi-squared test, z-test) and 
the hypothesis being tested. Furthermore, asymptotic 
theory is often used if the test statistics based on exact 
calculation are difficult to obtain [53].

For a single-stage design with the targeted one-sided 
significance level of α , the threshold � is normally set to 
1− α , provided that the test is a one-sided test and the 
prior distribution is a non-informative prior. This setting 
is frequently chosen, particularly when there is no past 
historical data to be incorporated into the prior; see the 
example of the beta-binomial model in Calibration of 
Bayesian trial design to assess frequentist operating char-
acteristics  section. If an informative prior is used, this 
convention (that is, � = 1− α ) should be carefully used 
because the type I error rate can be inflated or deflated 
based on the direction of the informativeness of prior 
distribution (see Table 1).

Asymptotic property of posterior probability approach
Bernstein-Von Mises theorem [90, 91], also called Bayes-
ian central limit theorem, states that if the sample size N 
is sufficiently large, the influence of the prior π(θ) dimin-
ishes, and the posterior distribution π(θ |yN ) closely 
resembles the likelihood f (yN |θ) under suitable regular-
ity conditions (for e.g., conditions stated in [91] or Sec-
tion 4.1.2 of [92]). Consequently, it simplifies the complex 
posterior distribution into a more manageable normal 
distribution, independent of the form of prior, as long as 
the prior distribution is continuous and positive on the 
parameter space.

By using Bernstein-Von Mises theorem, we can show 
that if the sample size N is sufficiently large, the posterior 
probability approach asymptotically behaves similarly to 

the frequentist testing procedure based on the p-value 
approach [93] under the regularity conditions. For the ease 
of exposition, we consider a one-sided testing problem. In 
this specific case, we further establish an asymptotic equa-
tion between the Bayesian tail probability (10) and p-value.

Theorem  1  Let a random sample of size N, 
yi, (i = 1, . . . ,N ) , be independently and identically taken 
from a distribution f (y|θ) depending on the real param-
eter θ ∈ � ⊂ R . Consider a one-sided testing problem 
H0 : θ ≤ θ0 versus HA : θ > θ0, where θ0 denotes the 
performance goal. Consider testing procedures with two 
paradigms:

where T1(yN ) is the maximum likelihood estimator and 
T2(yN ) is the Bayesian test statistics based on posterior 
probability approach, that is, T2(yN ) = P[θ > θ0|yN ] . �1 
and �2 denote threshold values for the testing procedures. 
For frequentist testing procedure, we assume that T1(yN ) 
itself serves as the frequentist test statistics of which higher 
values cast doubt against the null hypothesis H0 , and 
p(yN ) denotes the p-value. For Bayesian testing proce-
dure, assume that the prior density π(θ) is continuous and 
positive on the parameter space �.

Under the regularity conditions necessary for the validity 
of normal asymptotic theory of the maximum likelihood 
estimator and posterior distribution, and assuming the 
null hypothesis to be true, it holds that

independently of the form of π(θ).

Frequentist testing procedure : T1(yN ) > �1 ⇐⇒ RejectH0;
Bayesian testing procedure : T2(yN ) > �2 ⇐⇒ RejectH0,

(11)P[θ > θ0|yN ] ≈ 1− p(yN ) for large N ,

Fig. 3  Pictorial illustration of the decision rule based on the posterior probability approach: If the data y were generated from the alternative (or 
null) density f (y|θ) where θ ∈ �a (or θ ∈ �0 ), then the posterior distribution would be more concentrated on the alternative space �a (or null 
parameter �0 ), resulting in a higher (or lower) value of the test statistic F{π(θ |y)} = P[θ ∈ �a|y] . The pre-specified threshold � is used to make 
the dichotomous decision based on the test statistic
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The proof can be found in Supplemental material.
Typically, for regulatory submissions, the significance 

level of the one-sided superiority test (e.g., H0 : θ ≤ θ0 
versus HA : θ > θ0 , with the performance goal θ0 ) is 2.5% . 
To achieve a one-sided significance level of α = 0.025 
for a frequentist design, one would use the decision 
rule p(yN ) < 0.025 to reject the null hypothesis, where 
p(yN ) denotes the p-value. The p-value is often called the 
‘observed significance level’ because the value by itself 
represents the evidence against a null hypothesis based 
on the observed data yN [94].

Theorem  1 states that the value of the Bayesian tail 
probability (10) itself also serves as the evidence for the 
statistical significance. Furthermore, a Bayesian decision 
rule of P[θ > θ0|yN ] > 0.975 will lead to the one-sided 
significance level of 0.025, regardless of the choice of 
prior, whether it is informative or non-informative, under 
regularity conditions, if the sample size N is sufficiently 
large.

We illustrate Theorem  1 by using the beta-binomial 
model described in Calibration of Bayesian trial design 
to assess frequentist operating characteristics  section as 
an example. Recall that, under sample sizes of N = 100 , 
N = 150 , and N = 250 , Bayesian designs with non-
informative priors meet the type I error requirement, 
while Bayesian designs with optimistic and pessimistic 
priors inflate and deflate the type I error, respectively 
(see Table 1). Under the same settings (that is, Bayesian 
threshold � = 0.975 ), we now increase the sample size N 
up to 100,000 to explore the asymptotic behavior of the 
Bayesian designs. Figure  4 shows the results, where the 
inflation and deflation induced by the choice of the prior 
are getting washed out as N increases. When N is as large 
as 25,000 or more, the type I errors of all the Bayesian 

designs approximately achieve the type I error rate of 
2.5%, implying that the asymptotic Eq. (10) holds.

In practice, the sample size (N) for pivotal trials in 
medical device development and phase II trials in drug 
development often leads to a modest sample size, and 
there are practical challenges limiting the feasibility of 
conducting larger studies [95]. Consequently, the asymp-
totic Eq. (10) may not hold in such limited sample sizes. 
Therefore, sponsors need to conduct extensive simula-
tion experiments in the pre-planning of Bayesian clini-
cal trials to best leverage existing prior information while 
controlling the type I error rate.

Bayesian group sequential design
An adaptive design is defined as a clinical study design 
that allows for prospectively planned modifications 
based on accumulating study data without undermining 
the study’s integrity and validity [16, 40, 41]. In nearly 
all situations, to preserve the integrity and validity of a 
study, modifications should be prospectively planned 
and described in the clinical study protocol prior to ini-
tiation of the study [16]. Particularly, for Bayesian adap-
tive designs, including Bayesian group sequential designs, 
clinical trial simulation is a fundamental tool to explore, 
compare, and understand the operating characteristics, 
statistical properties, and adaptive decisions to answer 
the given research questions [96].

Posterior probability approach is widely adopted 
as a decision rule for complex innovative designs. In 
such designs, the choice of the threshold value(s) often 
depends on several factors, including the complexity of 
trial design, specific objectives, the presence of interim 
analyses, ethical considerations, statistical methodology, 
prior information, and type I & II error requirements.

Fig. 4  Type I error rates of Bayesian designs based on the beta-binomial model with three prior options for testing H0 : θ ≥ θ0 versus Ha : θ < θ0 , 
where θ0 = 0.12 . Prior options are (1) a non-informative prior with a = b = 1 , (2) an optimistic prior with a = 0.8 and b = 16 , and (3) a pessimistic 
prior with a = 3.5 and b = 20
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Consider a multi-stage design where the sponsor wants 
to use the posterior probability approach as an early stop-
ping option for the trial success at interim analyses as well 
as the success at the final analysis. Let y(k) ( k = 1, . . . ,K  ) 
denote the analysis dataset at the k-th interim analy-
sis (thus, the K-th interim analysis is the final analysis), 
and θ is the parameter of main interest. The sponsor 
wants to test H0 : θ ∈ �0 versus Ha : θ ∈ �a , where 
� = �0 ∪�a , and �0 and �a are disjoint. One can use 
the following sequential decision criterion:

Figure 5 displays the processes of decision rules based on 
single-stage design and K-stage group sequential design. In 
practice, a general rule suggests that planning for a maxi-
mum of five interim analyses ( K = 5 ) is often sufficient 
[52]. In single-stage design, there is only one opportunity 

1-st interim analysis : T (y(1)) = P[θ ∈ �a|y(1)] > �1 ⇐⇒ RejectH0,

2-nd interim analysis : T (y(2)) = P[θ ∈ �a|y(2)] > �2 ⇐⇒ RejectH0,

...

K-1-th interim analysis : T (y(K−1)) = P[θ ∈ �a|y(K−1)] > �K−1 ⇐⇒ RejectH0,

K-th interim analysis : T (y(K )) = P[θ ∈ �a|y(K )] > �K ⇐⇒ RejectH0.

to declare the trial a success. In contrast, sequential design 
offers K chances to declare success at interim analyses 
and the final analysis. However, having K opportunities to 
declare success implies that there are K ways the trial can 
be falsely considered successful when it is not truly suc-
cessful. These are the K false positive scenarios, and con-
trolling the overall type I error rate is crucial to maintain 
scientific integrity for regulatory submission [16].

Similar to frequentist group sequential designs, our 
primary concern here is to control the overall type I 

error rate of the sequential testing procedure. The over-
all type I error rate refers to the probability of falsely 
rejecting the null hypothesis H0 at any analysis, given 
that H0 is true. In this example, the overall type I error 
rate is given by:

(12)

P[T (y(1)) > �1 or · · · or T (y(K )) > �K |y(l) ∼ f (y|θ0), (l = 1, · · · ,K )]
= P[T (y(1)) > �1|y(1) ∼ f (y|θ0)]
+ P[T (y(1)) ≤ �1 and T (y(2)) > �2|y(l) ∼ f (y|θ0), (l = 1, 2)]
+ P[T (y(1)) ≤ �1 and T (y(2)) ≤ �2 and T (y(3)) > �3|y(l) ∼ f (y|θ0), (l = 1, 2, 3)]
+ · · ·
+ P[T (y(l)) ≤ �l , (l = 1, · · · ,K − 1) and T (y(K )) > �K |y(l) ∼ f (y|θ0), (l = 1, · · · ,K )],

Fig. 5  Processes of fixed design (a) and sequential design (b). The former allows only a single chance to declare success for the trial, while the latter 
allows K chances to declare success. The test statistic for the former design is denoted as T (y) = P[θ ∈ �a|y] , and for the latter design, they are 
T (y(k)) = P[θ ∈ �a|y(k)] , where (k = 1, · · · , K) . In both designs, threshold values ( � and �k , k = 1, · · · , K  ) should be pre-specified before the trial 
begins to control the type I error rate
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where θ0 ∈ �0 denotes the null value which leads to the 
maximum type I error rate (for e.g., θ0 is the performance 
goal for a single-arm superiority design). Noting from 
Eq.  (12), the overall type I error rate is a summation of 
the error rates at each interim analysis. For the relevant 
calculations corresponding to the frequentist group 
sequential design, refer to page 10 of [97], where Bayes-
ian test statistics T (y(l)) and thresholds �l ( l = 1, . . . ,K  ) 
are replaced by Z-test statistics based on interim data y(k) 
and pre-specified critical values, respectively.

The crucial design objective in the development of 
a Bayesian group sequential design is to control the 
overall type I error rate to be less than a significance 
level of α (typically, 0.025 for a one-sided test and 0.05 
for a two-sided test). This objective is similar to what 
is typically achieved in its frequentist counterparts, 
such as O’Brien-Fleming [98] or Pocock plans [99], or 
through the alpha-spending approach [100]. To achieve 
this objective, adjustments to the Bayesian thresholds 
(�1, . . . , �K ) are important, and this adjustment neces-
sitates extensive simulation work. Failing to make these 
adjustments may result in an inflation of the overall 
type I error. For example, if one were to use the same 
thresholds of �l = 1− α ( l = 1, . . . ,K  ) for all the interim 
analyses, then the overall type I error would lead to the 
value greater than α regardless of the maximum number 
of interim analyses. Furthermore, the overall type I error 
may eventually converge to 1 as the number of interim 
analyses K goes to infinity, similar to the behavior 
observed in a frequentist group sequential design [101]. 
Additionally, compared to single stage designs, group 
sequential designs may require a larger sample size to 
achieve the same power all else being equal, as there is 
an inevitable statistical cost for repeated analyses.

Example ‑ two‑stage group sequential design based 
on beta‑binomial model
We illustrate the advantage of using a Bayesian group 
sequential design compared to the single-stage Bayesian 
design described in Calibration of Bayesian trial design 
to assess frequentist operating characteristics  section. 
Similar research using frequentist designs can be found in 
[102]. Recall that the previous fixed design based on a non-
informative prior led to a power of 86.90% and a type I error 
rate of 2.31% with a sample size of 150 and a threshold of 
� = 0.975 (Table  1). Our goal here is to convert the fixed 
design into a two-stage design that is more powerful, while 
controlling the overall the type I error rate ≤ 0.025 . For fair 
comparison, we aim for the expected sample size E(N) of the 
two-stage design to be as close to 150 as possible. Having a 
smaller value of E(N) than 150 is even more desirable in our 
setting because it means that two-stage design can shorten 
the length of the trial of the fixed design. To compensate 
for the inevitable statistical cost of repeated analyses, the 
total sample size of the two-stage design is set to N = 162 , 
representing an 8% increase in the final sample size of the 
single-stage design. The stage 1 sample size N1 and stage 
2 sample size N2 are divided in the ratios of 3  : 7, 5  : 5, or 
7  :  3 to see the pattern of probability of early termination 
with different timing of interim analysis. Finally, we choose 
�1 = 0.996 and �2 = 0.978 as the thresholds for the interim 
analysis and the final analysis, respectively. Note that a more 
stringent stopping rule has been applied for early interim 
analyses than for the final analysis, similar to the proposed 
design of O’Brien and Fleming [98]. The same adaptation 
procedure will be taken to the single-stage designs with final 
sample sizes of 100 and 200 as reference.

Table  3 shows the results of the power analysis. It 
is observed that the overall type I error rates have 

Table 3  Operating characteristics of two-stage designs based on beta-binomial model

Note: All two-stage designs are based on the beta-binomial model with a non-informative prior. The expected sample size (E(N)) and the probability of early 
termination (PET) have been calculated under alternative, Ha . Formula of E(N) is given by E(N) = N1 + (1− PET ) · N2 , where N1 and N2 denote the sample sizes for 
stages 1 and 2, respectively. Thresholds for stage 1 and stage 2 are �1 = 0.996 and �2 = 0.978 , respectively, for all designs. The percentage change in the last column 
has been calculated by comparing the powers between the two-stage design and the single-stage design (non-informative) in Table 1

Total 
Sample 
Size ( N)

Stage 1 
Sample Size 
( N1)

Stage 2 
Sample Size 
( N2)

Expected 
Sample 
Size(E(N))

Probability of Early 
Termination ( PET)

Type I Error ( α) Power ( 1− β) % Change in Power 
Compared with Single-
stage Design

108 32 76 108 0.0000 0.0199 0.7053 +14.10

54 54 105 0.0603 0.0220 0.6945 +12.36

76 32 100 0.2632 0.0219 0.7094 +14.77

162 49 113 153 0.0819 0.0200 0.8865 +2.01

81 81 145 0.2202 0.0228 0.8862 +1.97

113 49 146 0.3348 0.0208 0.8860 +1.95

216 65 151 191 0.1659 0.0219 0.9598 +4.50

108 108 177 0.3642 0.0205 0.9570 +4.20

151 65 183 0.5120 0.0197 0.9568 +4.18
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been protected at 2.5% for all the considered designs. 
The expected sample sizes of the two-stage designs 
using a total sample size of N = 162 are E(N ) = 153 
( N1 : N2 = 3 : 7 ), E(N ) = 145 ( N1 : N2 = 5 : 5 ), and 
E(N ) = 146 ( N1 : N2 = 7 : 3 ), with the power improved 
from 86.9% (single-stage design, see Table 1) to approxi-
mately 88.6% for all three cases. The power gain is even 
greater for the two-stage designs using a total sample size 
of N = 216 , where the expected sample sizes are smaller 
than N = 200 , which is advantageous for using a group-
sequential design. Power gains occur for the two-stage 
designs using a total sample size of N = 108 as well, but 
the expected sample sizes are larger than N = 100 ; there-
fore, the single-stage design would be preferable in terms 
of expected sample sizes.

To summarize, the results show that, with an 8% 
increase in the final sample size of the single-stage 
design, we can construct a two-stage design in which 
the expected sample size is smaller or equal to the final 
sample size of the single-stage design. This is while still 
protecting the type I error rate below 2.5% and benefit-
ing from an increase in the overall power of the designs 
by as much as 14% ( N = 108 ), 2% ( N = 162 ), and 4% 
( N = 216 ), assuming the alternative hypothesis is true. 
In other words, a Bayesian group sequential design allow-
ing the claim of early success at interim analysis can help 
save costs by possibly reducing length of a trial when 
there is strong evidence of a treatment effect for the 
new medical device. Even if the evidence turns out to be 
not as strong as expected upon completion of the study 
(the null hypothesis seems more likely to be true in the 
observed final results), the potential risk for the sponsor 
would be the additional cost spent on enrolling 8% more 
patients than with the single-stage design.

Decision rule ‑ predictive probability approach
Predictive probability approach
The primary motivation for employing the predictive 
probability approach in decision-making is to answer 
the question at an interim analysis: “Is the trial likely to 
present compelling evidence in favor of the alternative 
hypothesis if we gather additional data, potentially up to 
the maximum sample size?” This question fundamentally 
involves predicting the future behavior of patients in the 
remainder of the study, where the prediction is based on 
the interim data observed thus far. Consequently, its idea 
is akin to measuring conditional power given interim 
data in the stochastic curtailment method [103, 104]. The 
key quantity here is the predictive probability of observ-
ing a statistically significant treatment effect if the trial 
were to proceed to its predefined maximum sample size, 
calculated in a fully Bayesian way.

One of the most standard applications of predictive 
probability approach for regulatory submission is the 
interim analysis for futility stopping (i.e., early stopping 
the trial in favor of the null hypothesis) [23, 105–107]. 
This is motivated primarily by an ethical imperative; the 
goal here is to assess whether the trial, based on interim 
data, is unlikely to demonstrate a significant treatment 
effect even if it continues to its planned completion. This 
information can then be utilized by the monitoring com-
mittee to assess whether the trial is still viable midway 
through the trial [108]. The study will stop for lack of 
benefit if the predictive probability of success at the final 
analysis is too small. Other areas where this approach 
are useful include the early termination for success 
with consideration of the current sample size (i.e., early 
stopping the trial in favor of the alternative hypothesis) 
[18, 109, 110], or sample size re-estimation to evaluate 
whether the planned sample size is sufficiently large to 
detect the true treatment effect [111].

We focus on illustrating the use of the predictive 
probability approach for futility interim analysis. To 
simplify the discussion, we consider the two-stage 
futility design where only one interim futility analysis 
exists. The idea illustrated here can be extended to a 
multi-stage design by implementing the following test-
ing procedure at each of the interim analyses in the 
multi-stage design. The logic explained here can be 
extended to the applications of early success claims and 
sample size re-estimation after a few modifications.

Suppose that y(1) and y(2) denote the datasets at the 
interim and final analyses, respectively, and θ is the 
main parameter of interest. We distinguish all incre-
mental quantities from cumulative ones using the 
notation “tilde”. Therefore, ỹ(2) and y(2) = {y(1), ỹ(2)} 
represent the incremental stage 2 data and the final 
data, respectively.

At the final analysis, a sponsor plans to test the null 
hypothesis H0 : θ ∈ �0 versus the alternative hypoth-
esis Ha : θ ∈ �a , where � = �0 ∪�a , and �0 and �a 
are disjoint sets. Suppose that H(y(2)) is the final test 
statistic to be used, and a higher value casts doubt that 
the null hypothesis is true. Therefore, the sponsor will 
claim the success of the trial if it is demonstrated that 
H(y(2)) > �2 with a predetermined threshold �2 , where 
the threshold is chosen to satisfy the type I & II error 
requirement of the futility design. It is at the sponsor’s 
discretion whether to use frequentist or Bayesian sta-
tistics to construct the final test statistic H(y(2)) . This is 
because the purpose of using the predictive probability 
approach is to make a decision at the interim analysis, 
not at the final analysis.

At the interim analysis, the outcomes from stage 1 patients 
y(1) are observed. We measure the predictive probability of 
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success at the final analysis, which is the Bayesian test sta-
tistics of the predictive probability approach represented as 
a functional G(·) : Qỹ(2)|y(1) → [0, 1] , such that:

where Qỹ(2)|y(1) represents the collection of posterior 
predictive distributions of stage 2 patient outcome ỹ(2) 
given the interim data y(1) . As seen from the integral (13), 
the fully Bayesian nature of the predictive probability 
approach is characterized by its integration of final deci-
sion results 1(H(y(1), ỹ(2)) > �2) over the data space of all 
possible scenarios of future patients’ outcome ỹ(2) , with 
the weight of the integral respecting the posterior pre-
dictive distribution f (ỹ(2)|y(1)) . Note that the posterior 
predictive distribution is again a mixture distribution of 
the likelihood function of the future outcome ỹ(2) and the 
posterior distribution given the interim data:

It is important to note that the predictive probability 
(13) differs from the predictive power [112, 113], which 
represents a weighted average of the conditional power, 
given by 

∫
P[H(y(1), ỹ(2)) > �2|θ] · π(θ |y(1))dθ . The cal-

culation of the predictive probability (13) follows the 
fully Bayesian paradigm. However, the predictive power 
is a mix of both frequentist and Bayesian paradigms, 
constructed based on the conditional power (frequentist 

(13)

G{f (ỹ(2)|y(1))} = T (y(1)) = P[H(y(1), ỹ(2)) > �2|y
(1)]

=

∫
1(H(y(1), ỹ(2)) > �2) · f (ỹ

(2)|y(1))dỹ(2),

f (ỹ(2)|y(1)) =
∫

f (ỹ(2)|θ) · π(θ |y(1))dθ .

statistics) and posterior distribution (Bayesian statis-
tics). Both can be used as the metric of a Bayesian sto-
chastic curtailment method [114], but the recent trend 
seems to be that the predictive probability is more prev-
alently used for regulatory submissions than predictive 
power [23, 115].

Finally, to induce a dichotomous decision at the 
interim analysis, we need to pre-specify the futility 
threshold γ1 ∈ [0, 1] . By introducing an indicator func-
tion ψ , the testing result for the futility analysis is deter-
mined as follow:

where 1 and 0 indicate the rejection and acceptance of 
the null hypothesis, respectively. Figure 6 displays a pic-
torial description of the decision procedure.

Theoretically, it is important to note that allowing 
early termination of a trial for futility tends to reduce 
both the trial’s power and the type I error rate [107]. To 
explain this, suppose that one uses the identical final 
threshold �2 in both of the two-stage futility design, as 
explained above, and the fixed design. Then, the follow-
ing inequality holds:

which means that the power function of the fixed design 
is uniformly greater or equal to the power function of the 
two-stage futility design over the entire parameter space 
� . This implies that equipping a futility rule to a fixed 
design leads to a reduction of both the type I error rate 
and power compared to the fixed design.

We briefly discuss the choice of the futility threshold 
γ1 and the final threshold �2 in the two-stage futility 

ψ(y(1)) =
{

1 if G{f (ỹ(2)|y(1))} = P[H(y(1), ỹ(2)) > �2|y(1)] ≥ γ1

0 if G{f (ỹ(2)|y(1))} = P[H(y(1), ỹ(2)) > �2|y(1)] < γ1,

(14)
Pθ [H(y(2)) > �2] ≥ Pθ [T (y(1)) ≥ γ1 and H(y(2)) > �2], for all θ ∈ �,

Fig. 6  Pictorial illustration of the decision rule based on the predictive probability approach for futility analysis. If the interim data y(1) favors 
accepting the null hypothesis (Case 2 in the figure), it is also likely that the future remaining patients’ outcomes ỹ(2) would be predicted to be more 
favorable for accepting the null hypothesis. This prediction results in a lower value of the test statistic G{f (ỹ(2)|y(1))} = P[H(ỹ(2) , y(1)) > �2|y(1)] 
(13). The pre-specified threshold γ1 is then used to make the dichotomous decision based on the test statistic
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design. Futility threshold γ1 is typically chosen within 
the range of 1% to 20% in many problems. Having fixed 
the threshold �2 , a higher threshold for γ1 increases the 
likelihood of discontinuing a trial involving an inef-
fective treatment, which is desirable because it short-
ens the trial length when there is a true negative effect. 
However, it may reduce both the type I error rate and 
power compared to a lower threshold for γ1 . On the 
other hand, the final threshold �2 of the futility design is 
typically chosen to align with the nominal significance 
level of the corresponding fixed design. This is mainly 
due to the relevant operational risk of inflating the 

type I error rate if futility stopping were not executed 
as planned, even after the final threshold �2 has been 
chosen to make rejection easier to reclaim the lost type 
I error rate [107, 116]. In summary, when construct-
ing a futility design, the sponsor needs to choose the 
futility threshold that does not substantially affect the 
operating characteristics of the original fixed-sample 
size, while also curtailing the trial length when there is 
a negative effect.

Example ‑ two‑stage futility design with Greenwood test
Suppose that a sponsor considers a single-arm design 
for a phase II trial to assess the efficacy of a new anti-
arrhythmic drug in treating patients with a mild atrial 
fibrillation [117]. The primary efficacy endpoint is the 
freedom from recurrence of the indication at 52 weeks 
(1 year) after the intervention. The sponsor sets the 
null and alternative hypotheses by H0 : θ ≤ 0.5 ver-
sus Ha : θ > 0.5 , where θ denotes the probability of 
freedom from recurrence at 52 weeks. Let S(t) repre-
sent the survival function; then the main parameter 
of interest is θ = S(52-week) . At the planning stage, 
regulator agreed on the proposal of sponsor that the 
time to recurrence follows a three-piece exponential 
model, with a hazard function given as h(t) = 0.1 · ξ if 
t ∈ [0, 8-week] , h(t) = 0.05 · ξ if t ∈ (8-week, 24-week] , 
and h(t) = 0.01 · ξ if t ∈ (24-week, 52-week] , where 
ξ is a positive number. In order to simulate the sur-
vival data in the power calculation, the value of ξ will 
be derived to set the true data-generating parameter 

to be θ = S(52-week) = 0.50, 0.55, 0.60, 0.65, and 0.7. 
Note that θ = 0.50 corresponds to the type I error sce-
nario, and the rest of the settings correspond to power 
scenarios.

We first construct a single-stage design with the final 
sample size of N = 100 patients. The final analysis is 
conducted by a frequentist hypothesis testing based on 
the one-sided level-0.025 Greenwood test using a confi-
dence interval approach [118]. More specifically, the test-
ing procedure is that the null hypothesis is rejected if the 
lower bound of the 95% two-sided confidence interval 
evaluated at t = 52-week is greater than 0.5, that is,

Here, the mean estimate Ŝ(t) is the Kaplan-Meier estimate 
of S(t) [119], and its variance estimate ˆVar[Ŝ(t)] is based on 
the Greenwood formula [120], and notation y represents the 
final data from N = 100 patients. The results of the power 
analysis obtained by simulation indicate that the probabili-
ties of rejecting the null hypothesis are 0.0185, 0.1344, 0.461, 
0.8332, and 0.9793 when the effectiveness success rates ( θ ) 
are 0.5, 0.55, 0.60, 0.65, and 0.7, respectively. Note that the 
type I error rate is 0.0185 less than the 0.025.

Next, we construct a two-stage futility design by equip-
ping the above single-stage design with a non-binding 
futility stopping option based on the predictive prob-
ability approach. Non-binding means that the investiga-
tors can freely decide whether they really want to stop 
or not. This is more common in practice because a stop-
ping decision is typically influenced not only by interim 
data but also by new external data or safety informa-
tion [121]. The final sample size of the futility design is 
again N = 100 , and we keep the decision criterion for the 
study success of the final test the same as that of the sin-
gle-stage design (15). This means that there are no adjust-
ments to the final threshold to reclaim a loss of type I 
error rate. The futility analysis will be performed when 
N1 = 30 patients have completed the 52 weeks of follow-
up (30% of participants). A non-informative Gamma 
prior Ga(0.1, 0.1) will be used for each of the hazard rate 
parameters of the three-piece exponential model. Futility 
stopping (i.e., accepting the null hypothesis) is triggered if 
the predictive probability of trial success at the maximum 
sample size is less than the pre-specified futility threshold 
γ1 = 0.05 . Technically, the predictive probability is

(15)Study Sucess = 1

{
LB(y) = Ŝ(52-week)− 1.96 ·

√
ˆVar[Ŝ(52-week)] > 0.5

}
.

T (y(1)) = P[LB(y(1), ỹ(2)) > 0.5|y(1)] =
∫

1(LB(y(1), ỹ(2)) > 0.5) · f (ỹ(2)|y(1))dỹ(2),
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where y(1) and ỹ(2) denote the time-to-event outcomes 
from N1 = 30 patients and Ñ2 = N − N1 = 70 patients, 
respectively, and f (ỹ(2)|y(1)) denotes the posterior pre-
dictive distribution of outcomes of the future remaining 
patients ỹ(2).

In the power analysis, we vary the number of stage 1 
patients, N1 , to 50 and 70 and set the futility threshold, 
γ1 , to 0.1 and 0.15 to explore the operating characteristics 
of the futility design. Figure 7 illustrates the testing pro-
cedures of the single-stage design and the two-stage futil-
ity design. In this setting, the only difference between the 
futility and single-stage designs is that the former has the 
option to stop the trial due to futility when N1 patients 
had completed the follow-up of 52 weeks, while the latter 
does not. Table 4 shows the power analysis results of the 
two-stage futility designs.

The results demonstrate that the probability of reject-
ing the null hypothesis in the futility design is consist-
ently lower than that in the single-stage design across 
various effectiveness success rates ( θ = 0.5, 0.55, 0.6, 0.65, 
and 0.7). This finding aligns with the theoretical result 
(refer to inequality (14)). For example, in the case where 
the futility threshold γ1 = 0.05 with a stage 1 sample 
size of N1 = 30 , the percentage change in the probabil-
ity of rejecting the null hypothesis compared to a single-
stage design is −8.82% , −15.86% , −4.53% , −1.858% , and 
−0.441% when the true effectiveness success rate ( θ ) is 
0.5, 0.55, 0.6, 0.65, and 0.7, respectively.

We examine the general pattern of the reduction in 
the type I error rate and power of the futility design 
compared to the single-stage design as the futility 
threshold γ1 changes. Note that the average of type I 
error rates across three different stage 1 sample size for 
the futility design are 0.0173, 0.0160, and 0.0156 when 
the futility thresholds γ1 are set at 0.05, 0.10, and 0.15, 
respectively. These results reflect reductions of 6.4%, 
13.5%, and 15.6% in the type I error rate compared to 

the single-stage design. (Recall that the type I error 
rate of the single-stage design is 0.0185.) This implies 
that a higher value for the futility threshold γ1 leads to 
a more substantial reduction in the type I error rate 
compared to the single-stage design. A similar pattern 
of reduction is observed in the power scenarios when 
θ = 0.55, 0.6, 0.65, and 0.7.

Notably, the probability of early termination tends to 
increase as the stage 1 sample size grows from N1 = 30 
to N3 = 70 . This increase is particularly significant in the 
type I error scenario when θ = 0.5 . Across all the scenar-
ios examined, the expected sample size consistently stays 
below N = 100 . This indicates that the futility design 
outperforms the single-stage design in terms of expected 
sample size as a performance criterion. Furthermore, 
this reduction in expected sample size is even more pro-
nounced in the type I error scenarios. In conclusion, 
it is evident that for long-term survival endpoints, like 
the example discussed here, the futility design can lead 
to substantial resource savings by allowing the trial to 
be terminated midway when the lack of clinical benefit 
becomes clear.

Multiplicity adjustments
Multiplicity problem ‑ primary endpoint family
Efficacy endpoints are measures designed to reflect the 
intended effects of a drug or medical device. Clinical 
trials are often conducted to evaluate the relative effi-
cacy of two or more modes of treatment. For instance, 
consider a new drug developed for the treatment of 
heart failure [122]. In this case, it may be unclear 
whether the heart failure drug primarily promotes a 
decrease in mortality, a reduction in heart failure hospi-
talization, or an improvement in quality of life (such as 
Kansas City Cardiomyopathy Questionnaire score over-
all summary score [123]). However, demonstrating any 

Fig. 7  Testing procedures of the single-stage design and the two-stage futility design are as follows: at the final analysis, both designs employ 
the one-sided level-0.025 Greenwood test with a final sample size of N = 100 . Only the futility design has the option to stop the trial due to futility 
when N1 patients had completed 52 weeks of follow-up. In the power analysis, we use N1 = 30, 50 , and 70, along with γ1 = 0.05 , 0.1, and 0.15 
to assess the operating characteristics of the design
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of these effects individually would hold clinical signifi-
cance; there are multiple chances to ‘win.’ Consequently, 
all three endpoints – mortality rate, number of heart 
failure hospitalizations, and an index for quality of life 
– might be designated as separate primary endpoints. 
This is an illustrative example of a primary endpoint 
family, and failure to adjust for multiplicity can lead to 
a false conclusion that the heart failure drug is effective. 
Here, multiplicity refers to the presence of numerous 
comparisons within a clinical trial [124–127]. See Sec-
tion III of the FDA guidance document for the multi-
ple endpoints for more details on the primary endpoint 
family [128].

In the following, we formulate the multiplicity prob-
lem of the primary endpoint family. We consider a 
family of K primary endpoints, any one of which could 
support the conclusion that a new treatment has a bene-
ficial effect. For simplicity, we assume that the outcomes 
of the patients are binary responses, where a response 
of 1 (yes) indicates that the patient shows a treatment 
effect. Using the example of a heart failure drug, the first 
efficacy endpoint measures mortality: whether a patient 
has survived (yes/no), the second endpoint measures 
morbidity: whether a patient experienced heart failure 
hospitalization (no/yes), and the third endpoint meas-
ures the quality of life: whether the Kansas City Car-
diomyopathy Questionnaire overall summary score 

has improved by more than 15 points (yes/no) during a 
defined period after the treatment. The logic explained 
in the following can be applied to various types of out-
comes, including continuous outcomes and time-to-
event outcomes.

We consider a form of parallel group trial design, each 
associated with hypotheses given by:

where θi denotes the response rate for the i-th endpoint 
(where a higher rate indicates a better treatment effect), 
and θ0,i represents the performance goal associated with 
the i-th endpoint.

In a clinical trial with a single endpoint (K = 1) 
tested at α = 0.025 , the probability of finding a treat-
ment effect by chance alone is at most 0.025. However, 
multiple testing ( K > 1 ) can increase the likelihood 
of type I error (a false conclusion that a new drug is 

(16)H0,i : θi ≤ θ0,i versus Ha,i : θi > θ0,i , (i = 1, · · · ,K ),

effective). To explain this, suppose that at the final 
analysis upon completion of the study, the rejec-
tion of any one of the null hypotheses among K null 
hypotheses will lead to marketing approval for a new 
drug. If there are K = 2 independent endpoints, each 
tested at α = 0.025 , and success on either endpoint by 
itself would lead to a conclusion of a drug effect, the 
type I error rate is approximately 5 ≈ 1− (1− 0.025)2 
percent. With K = 4 endpoints, the type I error rate 
increases to about 10 ≈ 1− (1− 0.025)4 percent. 
When there are K = 10 endpoints, the type I error rate 
escalates to about 22 ≈ 1− (1− 0.025)10 percent. The 
problem becomes more severe as the number of end-
points (K) increases.

Familywise type I error rate and power
It is important to ensure that the evaluation of multi-
ple hypotheses will not lead to inflation of the study’s 
overall type I error probability relative to the planned 
significance level. This is the primary regulatory con-
cern, and it is required to minimize the chances of a 
false positive conclusion for any of the endpoints, 
regardless of which and how many endpoints in the 
study have no effect [128]. This probability of incorrect 
conclusions is known as the familywise type I error 
rate [129]. Technically, it is the probability of errone-
ously rejecting at least one null hypothesis under the 
global null, and can be written as,

where K = P({1, 2, · · · ,K })− ∅ . Here, P(A) and ∅ denote 
the power set of set A and the empty set, respectively. 
If there are K = 4 endpoints, one needs to consider 
15 = 24 − 1 false positive scenarios, each of which con-
tributes to an increase in αfamily . When K = 10 endpoints 
are examined in a study, the number of false positive sce-
narios increases to 1023 = 210 − 1 scenarios. V denotes 
the number of hypotheses rejected among the K hypoth-
eses, taking an integer value from 0 to K.

Another regulatory concern for a primary endpoint 
family is to maximize the chances of a true positive 
conclusion. The desired power is an important factor 
in determining the sample size. Unlike the type I error 
scenario where αfamily is standardly used in most cases, 
the concept of power can be generalized in various ways 
when multiple hypotheses are considered (see Chapter 2 
in [129] for more details). The following two types of 
power are frequently used under the global alternative

(17)
αfamily = P[Reject at least one null hypothesis|All null hypotheses are true]

= P[Reject the collection {H0,i}i∈A for all A ∈ K|{H0,i}Ki=1 are true]
= P[V ≥ 1|{H0,i}Ki=1 are true],
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The former πdis (18) and latter π con (19) are referred to 
as disjunctive power and conjunctive power, respectively 
[130]. By definition, the disjunctive power is greater than 
the conjunctive power if the number of endpoints is more 
than one ( K = 2, 3, · · · ), and both are equal when K = 1.

Typically, regulators require the study design to have 
αfamily ≤ α with a target level α = 0.025 for a one-sided 
test and α = 0.05 for a two-sided test for a primary end-
point family. On the other hand, study specific discus-
sion is necessary to determine which power (disjunctive 
power, conjunctive power, or another type) should be 
used for a given study. For example, if the study’s objec-
tive is to detect all existing treatment effects, then one 
may argue that conjunctive power π con should be used. 
However, if the objective is to detect at least one true 
effect, then disjunctive power πdis is recommended [128].

Frequentist method ‑ p‑value based procedures
Much has been written and published on the math-
ematical aspects of frequentist adjustment procedures 
for multiple comparisons, and we refer the reader else-
where for the details [131–133]. Here, we briefly explain 
three popular p-value based multiplicity adjustment 
procedures: the Bonferroni, Holm, and Hochberg meth-
ods [134, 135]. These methods utilize the p-values from 
individual tests and can be applied to a wide range of 
test situations [136]. The fundamental difference is that 
the Bonferroni method uses non-ordered p-values, while 
the Holm and Hochberg methods use ordered p-values. 
Refer to Section 18 from [137] for excellent summary of 
these methods.

• Bonferroni Method  The Bonferroni method is a single-
step procedure that is commonly used, perhaps because 
of its simplicity and broad applicability. It is known that 
Bonferroni method provides the most conservative mul-
tiplicity adjustment [126]. Here, we use the most com-
mon form of the Bonferroni method which divides the 
overall significance level of α (typically 0.025 for the one-
sided test) equally among the K endpoints for testing K 

(18)
πdis = P[Reject at least one null hypothesis|All alternative hypotheses are true]

= P[Reject the collection {H0,i}i∈A for all A ∈ K|{Ha,i}Ki=1 are true]
= P[V ≥ 1|{Ha,i}Ki=1 are true],

(19)
π con = P[Reject all null hypotheses|All alternative hypotheses are true]

= P[Reject the collection {H0,i}Ki=1|{Ha,i}Ki=1 are true]
= P[V = K |{Ha,i}Ki=1 are true].

hypotheses (16). The method then concludes that a treat-
ment effect is significant at the α level for each one of the 
K endpoints for which the endpoint’s p-value is less than 
α/K .

• Holm Method  The Holm procedure is a multi-step 
step-down procedure. It is less conservative than the 
Bonferroni method because a success with the small-
est p-value allows other endpoints to be tested at larger 
endpoint-specific alpha levels than does the Bonferroni 
method. The endpoint p-values resulting from the final 
analysis are ordered from the smallest to the largest (or 
equivalently, the most significant to the least significant), 
denoted as p(1) ≤ · · · ≤ p(K ).

We take the following stepwise procedure: (Step 1) the 
test begins by comparing the smallest p-value, p(1) , to 
α/K  , the same threshold used in the equally-weighted 
Bonferroni correction. If this p(1) is less than α/K  , the 
treatment effect for the endpoint associated with this 
p-value is considered significant; (Step 2) the test then 
compares the next-smallest p-value, p(2) , to an endpoint-
specific alpha of the total alpha divided by the number 
of yet-untested endpoints. If p(2) < α/(K − 1) , then the 
treatment effect for the endpoint associated with this p(2) 
is also considered significant; (Step 3) The test then com-
pares the next ordered p-value, p(3) , to α/(K − 2) , and so 
on until the last p-value (the largest p-value) is compared 
to α ; (Step 4) The procedure stops, however, whenever 
a step yields a non-significant result. Once an ordered 
p-value is not significant, the remaining larger p-values 
are not evaluated and it cannot be concluded that a treat-
ment effect is shown for those remaining endpoints.

• Hochberg Method  The Hochberg procedure is 
a multi-step step-up testing procedure. It com-
pares the p-values to the same alpha critical values of 
α/K ,α/(K − 1), · · · ,α/2,α , as the Holm procedure. 
However, instead of starting with the smallest p-value 
as performed in Holm procedure, Hochberg procedure 
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starts with the largest p-value (or equivalently, the least 
significant p-value), which is compared to the larg-
est endpoint-specific critical value α . If the first test of 
hypothesis does not show statistical significance, testing 
proceeds to compare the second-largest p-value to the 
second-largest adjusted alpha value, α/2 . Sequential test-
ing continues in this manner until a p-value for an end-
point is statistically significant, whereupon the Hochberg 
procedure provides a conclusion of statistically-signifi-
cant treatment effects for that endpoint and all endpoints 
with smaller p-values.

• Examples  For illustration, suppose that a trial with 
four endpoints (K = 4) yielded one-sided p-values of 
p1 = 0.006 (1-st endpoint), p2 = 0.013 (2-nd endpoint), 
p3 = 0.008 (3-rd endpoint), and p4 = 0.0255 (4-th end-
point) at the final analysis.

The Bonferroni method compares each of these p-val-
ues to 0.00625 = 0.025/4 , resulting in a significant treat-
ment effect at the 0.025 level for only the 1-st endpoint 
because only the 1st endpoint has a p-value less than 
0.00625.

The Holm method considers the successive endpoint-spe-
cific alphas, 0.00625 = 0.025/4 , 0.00833 = 0.025/(4 − 1) , 
0.0125 = 0.025/(4 − 2) , and 0.025 = 0.025/(4 − 3) . We 
start by comparing the smallest p-value p1 = 0.006 with 
0.00625. The treatment effect for the 1-st endpoint is thus 
successfully demonstrated, and the test continues to the sec-
ond step. In the second step, the second smallest p-value is 
p3 = 0.008 , which is compared to 0.00833. The 3-rd end-
point has, therefore, also successfully demonstrated a treat-
ment effect, as 0.008 is less than 0.00833. Testing can now 
proceed to the third step, in which the next ordered p-value 
of p2 = 0.013 is compared to 0.0125. In this comparison, 
as 0.013 is greater than 0.0125, the test is not statistically 
significant. This non significant result stops further tests. 
Therefore, in this example, the Holm procedure concludes 
that treatment effects have been shown for the 1st and 3rd 
endpoints.

The Hochberg method considers the same successive 
endpoint-specific alphas as the Holm method. In the first 
step, the largest p-value of p4 = 0.0255 is compared to its 
alpha critical value of α = 0.025 . Because this p-value of 
0.0255 is greater than 0.025, the treatment effect for the 
4-th endpoint is considered not significant. The proce-
dure continues to the second step. In the second step, 
the second largest p-value, p2 = 0.013 , is compared to 
α/2 = 0.0125 . Because p2 is greater than the allocated 
alpha, and the 2-nd endpoint is also not statistically sig-
nificant, the test continues to the third step. In the third 

step, the next largest p-value, p3 = 0.008 , is compared 
to its alpha critical value of α/3 = 0.00833 , and the 3-rd 
endpoint shows a significant treatment effect. This result 
automatically causes the treatment effect for all remain-
ing untested endpoints, which have smaller p-values than 
0.008, to be significant as well. Therefore, the 1-st end-
point also shows a significant treatment effect.

Bayesian multiplicity adjustment methods
Bayesian adjustments for multiplicity [138–141] can be 
acceptable for regulatory submissions, provided the anal-
ysis plan is pre-specified and the operating characteristics 
of the analysis are adequate [16]. It is advisable to consult 
regulators early on with regard to a Statistical Analysis 
Plan that includes Bayesian adjustment for multiplicity.

Generally, the development of Bayesian multiplicity 
adjustment involves three steps:

•	 Step 1: Statistical modeling for the outcomes of end-
points,

•	 Step 2: Performing the test for individual hypotheses 
(16) with pre-specified thresholds,

•	 Step 3: Interpreting the results of Step 2 in terms of 
the familywise error rate (17).

One of the unique advantages of Bayesian multiplicity 
adjustment is the flexibility of statistical modeling in the 
planning phase of Step 1, tailored to the study’s objec-
tives, the characteristics of the sub-population, and other 
relevant factors. For example, if a certain hierarchical or 
multilevel structure exists among sub-populations (such 
as, center - doctor - patients as discussed in [142]), then 
one would use a Bayesian hierarchical model to account 
for the heterogeneity between sub-populations and 
patient-to-patient variability simultaneously [26, 143, 
144]. Furthermore, adaptive feature can be also incor-
porated to the Bayesian multiplicity adjustment [145, 
146]. This stands in contrast to traditional frequentist 
approaches, which evaluate the outcomes from each sub-
population independently or simply combine data from 
all sub-populations through a pooled analysis [147].

In Step 2, sponsors need to provide detailed descrip-
tions of the decision rules that will be used to reject the 
i-th null hypothesis H0i ( i = 1, · · · ,K  ) in the Statisti-
cal Analysis Plan. The sponsor can choose either the 
posterior probability approach (Decision rule - pos-
terior probability approach  section) or the predictive 
probability approach (Decision rule - predictive prob-
ability approach  section) as the decision rules. Most 
importantly, the threshold value for rejecting each null 
hypothesis should be pre-specified in the Statistical 
Analysis Plan, which often requires extensive simula-
tions across all plausible scenarios (such as global null (“0 
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success” or “K failures”), the global alternative (“K suc-
cesses”), and the mixed alternative scenarios).

Finally, in Step 3, the results of the K individual tests 
are interpreted to ensure that the frequentist familywise 
type I error rate αfamily (17) is lower than or equal to the 
overall significance level α . Additionally, power specific 
to the study objective (disjunctive power, conjunctive 
power, or another type) may be measured to estimate the 
sample size of the study.

Bayesian multiplicity adjustment using Bayesian 
hierarchical modeling
Here, we illustrate the simplest form of the Bayesian 
multiplicity adjustment method using Bayesian hierar-
chical modeling. [83, 84, 146, 148]. Bayesian hierarchical 
modeling is a specific Bayesian methodology that com-
bines results from multiple arms or studies to obtain esti-
mates of safety and effectiveness parameters [149]. This 
approach is particularly appealing in the regulatory set-
ting when there is an association between the outcomes 
of K endpoints so that exchangeability of patients’ out-
comes across K endpoints can be assumed [140]. Figure 8 
outlines the three steps of the multiplicity control proce-
dure using a Bayesian hierarchical model.

Let Ni be the number of patients to be enrolled in the 
i-th arm associated with the i-th endpoint for testing the 
null and alternative hypotheses, H0,i : θi ≤ θ0,i versus 
Ha,i : θi > θ0,i, (i = 1, · · · ,K ) (16). The total sample 
size of the study is therefore N =

∑K
i=1Ni . Let yi denote 

the number of responders to a treatment, where a higher 
number indicates better efficacy. Then, the number of 
responders associated with the i-th endpoint is distrib-
uted according to a binomial distribution:

Note that the parameters of main interest are 
(θ1, · · · , θK ) ∈ [0, 1]K  . Suppose that there is an 

(20)yi|θi ∼ BN (Ni, θi), (i = 1, · · · ,K ).

association between the outcomes of the K endpoints, 
and K sub-populations are exchangeable, a priori. We 
assume the most basic formulation of hierarchical prior 
on the (θ1, · · · , θK ) given by:

where the parameter θi is logit-transformed to φi 
(i.e., θi = exp(φi)/{1+ exp(φi)} , or equivalently, 
φi = log(θi/(1− θi)) ). The normal-inverse-gamma 
prior, denoted as (µ, σ 2) ∼ NIG(ν,ω, a, b) , is equiva-
lent to a mixture of normal and inverse gamma pri-
ors: µ|σ 2 ∼ N (ν, σ 2/ω) and σ 2 ∼ IG(a, b) . (ν,ω,α,β) 
represent the hyper-parameters, which we set as (0,   
1/100,   0.001,   0.001). This choice ensures that the nor-
mal-inverse-gamma prior is diffused over the parameter 
space, and the prior information is almost vague (essen-
tially, nearly non-informative), similar to the choice made 
by [146].

The hierarchical formulation (20)–(22) is designed 
to induce a shrinkage effect [150, 151]. Under this for-
mulation, the Bayesian estimators of the parameters 
φi, (i = 1, · · · ,K ) (or equivalently, θi, (i = 1, · · · ,K ) ) will 
be pulled toward the global mean µ (or equivalently, 
exp(µ)/1+ exp(µ) ), leading to a reduction in the width 
of the interval estimates of the parameters, a posteriori, 
similar to the James-Stein shrinkage estimator [152]. 
This shrinkage effect is also referred to as “borrowing 
strength”, recognized in numerous regulatory guidance 
documents related to clinical trials for medical devices 
and small populations [16, 153].

To test the null and alternative hypotheses associated 
with the i-th endpoint (16), we use the posterior prob-
ability approach for decision-making as follow. Upon 
completion of the study, for each i ( i = 1, · · · ,K  ), we 
reject the i-th null hypothesis, H0,i : θi ≤ θ0,i , if the 

(21)φi|µ, σ 2 ∼ N (µ, σ 2), (i = 1, · · · ,K ),

(22)(µ, σ 2) ∼ NIG(ν,ω, a, b),

Fig. 8  Three steps to control the familywise type I error rate through Bayesian hierarchical modeling. The first step involves specifying a Bayesian 
hierarchical model, which depends on the context of the problem. In the second step, the decision rule for each individual test is specified. The 
third step involves interpreting the combination of individual type I error rates in terms of the familywise type I error rate, which is restricted 
by the overall significance level
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posterior probability of the i-th alternative hypothesis, 
Ha,i : θi > θ0,i , being true is greater than a pre-specified 
threshold �i ∈ [0, 1] . That is, the decision criterion for the 
i-th endpoint is as follow:

where y1:K  denotes the numbers of responses from the K 
endpoints. A higher value of �i leads to a more conserva-
tive testing for the i-th endpoint, resulting in a lower type 
I error rate and a lower power, given a fixed sample size 
Ni . The posterior probability in (23) is typically stochasti-
cally approximated by an analogous form of Algorithm 1 
in Supplemental material, based on an MCMC method 
because the posterior distribution, π(θ1:K ,µ, σ 2|y1:K ) , is 
not represented as a closed-form distribution.

Suppose that the i-th null hypothesis has been rejected at 
the final analysis. In this case, the drug is considered to have 
demonstrated effects for the i-th endpoint. The K threshold 
values (�1, . . . , �K ) in the decision criteria (23) should be 
pre-specified during the design stage and chosen through 
simulation to ensure that the frequentist familywise type I 
error αfamily (17) is less than the overall significance level α.

Simulation experiment
We evaluate the performance of Bayesian hierarchical 
modeling and frequentist methods (specifically, Bonfer-
roni, Holm, and Hochberg procedures) as described in 
Frequentist method - p-value based procedures  section 
under varying assumptions of the number of endpoints 
(K) from 1 to 10. Regarding the threshold for the deci-
sion rule (23) of Bayesian hierarchical modeling, we use 
the same value, �i = 0.985 , for all endpoints i = 1, · · · ,K  , 
irrespective of the number of endpoints K. In other 
words, there is no specific threshold adjustment concern-
ing the number of endpoints (K).

The thresholds (adjusted alphas) for the Bonferroni, Holm, 
and Hochberg procedures are described in Frequentist 
method - p-value based procedures  section. Note that the 
thresholds for the three procedures are set to be increasingly 
stringent as the number of endpoints (K) increases, aiming 
to keep the familywise type I error αfamily less than α.

The sample size for each sub-population, Ni 
( i = 1, · · · ,K  ), is set to 85 or 100. For a single endpoint 
(K = 1) , these sample sizes lead to a power of approxi-
mately 80% ( Ni = 85 ) and 86% ( Ni = 100 ) based on the 
Z-test for one proportion at the one-sided significance 
level α = 0.025.

The followings are summary of the simulation setting:

•	 Number of endpoints: K = 1, 2, · · · , 10,
•	 One-sided significance level: α = 0.025,

(23)
Sucess for the i-th endpoint = 1{P[θi > θ0,i|y1:K ] > �i}, (i = 1, · · · ,K ),

•	 Number of patients: Ni = 85 or 100, (i = 1, · · · ,K ),
•	 Performance goals: θ0,i = 0.35, (i = 1, · · · ,K ),
•	 Anticipated rates: θa,i = 0.5, (i = 1, · · · ,K ),
•	 Multiplicity adjustment methods: 

1.	 Bayesian hierarchical modeling (Bayesian 
method),

2.	 Bonferroni, Holm, and Hochberg procedures 
(Frequentist methods),

•	 Decision rule: 

1.	 Bayesian hierarchical modeling: Posterior 
probability approach (23) with the threshold 
�i = 0.985, (i = 1, · · · ,K ) across all settings,

2.	 Bonferroni, Holm, and Hochberg procedures: 
Use the adjusted p-value as described in Frequen-
tist method - p-value based procedures  section 
such that the unadjusted p-value are obtained by 
the exact binomial test [154].

Figure  9 displays the results of simulation experiments. 
Panels (a) and (b) demonstrate that all the considered 
adjustment methods successfully control the familywise 
type I error rate, αfamily , at the one-sided significance 
level of α = 0.025 across the number of endpoints K. 
Notably, these two panels show that the familywise type 
I error rate, αfamily , based on Bayesian method decreases 
as K increases, even when the same thresholds �i = 0.985 
are universally used across all settings. This result implies 
that there is no need for adjustments of the Bayesian 
threshold [140]. Essentially, this nice property is due to 
the shrinkage effect: borrowing strength across sub-pop-
ulations automatically adjusts the familywise type I error 
rate αfamily to be less than α = 0.025.

Panels (c) and (d) demonstrate that the disjunctive pow-
ers πdis (18) of all the considered adjustment methods 
increase as K increases. The Bayesian method is the most 
powerful, while the Bonferroni method is the least pow-
erful among the four methods. The Hochberg method is 
marginally more powerful than the Holm method. Pan-
els (e) and (f ) show that only the Bayesian method leads 
to an increase in the conjunctive power π conj (19) as K 
increases. These results indicate that the shrinkage effect 
of Bayesian hierarchical modeling is beneficial under the 
two power scenarios. In contrast, p-value-based multi-
plicity adjustment procedures are only appropriate to use 
under the disjunctive power scenario. This implies that 
the total sample size N =

∑K
i=1Ni required for the study 

can be significantly reduced if the Bayesian hierarchical 
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model is used, compared to the frequentist methods. 
Particularly for the conjunctive power scenario, only 
the Bayesian hierarchical model possesses this unique 
advantage.

To summarize, the simulation experiment implies that 
the mechanism of multiplicity adjustment (shrinkage 
effect or borrowing strength) is automatically embedded 
in Bayesian hierarchical modeling. This controls the fam-
ilywise type I error rate to be less than the significance 
level and improves both disjunctive and conjunctive pow-
ers as the number of hypotheses increases. This contrasts 
with the p-value-based procedures, which are criticized 
by their overconservatism, which becomes acute when 
the number of hypotheses is large [134, 136, 155, 156].

External data borrowing
Bayesian information borrowing for regulatory submission
There is a growing interest in Bayesian clinical trial 
designs with informative prior distributions, allowing 
the borrowing of information from an external source. 
Borrowing information from previously completed trials 

is used extensively in medical device trials [16, 20, 157] 
and is increasingly seen in drug trials for extrapolation 
of adult data to pediatrics [35] or leveraging historical 
datasets for rare diseases [158–160]. In general, spon-
sors benefit in multiple ways by using Bayesian borrow-
ing designs, including reductions in sample size, time, 
expense, and increased statistical power.

In practice, the key difficulty facing stakeholders hop-
ing to design a trial using Bayesian borrowing methods 
is understanding the similarity of previous studies to 
the current study, including factors such as enrollment 
and treatment criteria, and achieving exchangeability 
between the studies in discussions with regulators. For 
example, outcomes of medical device trials for a device 
can vary substantially due to the device evolvement 
from the previous to the next generation, or by site 
influenced by differences such as physician training, 
technique, experience with the device, patient manage-
ment, and patient population, among many other fac-
tors. Regulatory agencies recognize that two studies 
are never exactly alike; nonetheless, it is recommended 

Fig. 9  Results of simulation experiment with different number of endpoints ( K = 1, · · · , 10 ) and group size ( Ni = 85, 100)
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that the studies used to construct the informative prior 
be similar to the current study in terms of the proto-
col (endpoints, target population, etc.) and the time 
frame of the data collection to ensure that the practice 
of medicine and the study populations are comparable 
[16]. It is crucial that companies and regulators reach 
an agreement regarding the prior information and the 
Bayesian design before enrolling any patients in the 
new study [161].

One perceptible trend in the Bayesian regulatory 
environment is that the strict control of the type I 
error rate in the frequentist framework may need to 
be relaxed to a less stringent level for Bayesian sub-
missions using information borrowed from external 
evidence, due to the unavoidable inflation of the type 
I error rate in certain scenarios [61, 75, 76, 162]. Such 
an inflation scenario typically occurs when the external 
data is more favorable for rejecting the null hypoth-
esis of the current trial. Regulators are also increas-
ingly aware of the substantial limitations that stringent 
control of the frequentist type I error may entail. For 
example, an FDA guidance [16] states that, ‘If the FDA 
considers the type I error rate of a Bayesian experimen-
tal design to be too large, we recommend modifying the 
design or the model to reduce that rate. Determination 
of “too large” is specific to a submission because some 

sources of type I error inflation (e.g., large amounts of 
valid prior information) may be more acceptable than 
others (e.g., inappropriate choice of studies for construc-
tion of the prior, inappropriate statistical model, or 
inappropriate criteria for study success). The seriousness 
(cost) of a Type I error is also a consideration.’ Several 
approvals were granted both in the US and in Europe 
based on non-randomized studies using external con-
trols [160]. Even though these approvals were typically 
for rare diseases, they signal the increasing willingness 
of regulators to review applications for Bayesian bor-
rowing designs.

In order to control the type I error rate at a reason-
able level with which stakeholders agree, one of the key 
aspects of Bayesian borrowing designs is to appropriately 
discount historical/prior information if the prior distribu-
tion is too informative relative to the current study [16]. 
Although such discounting can be achieved by directly 
changing the hyper-parameters of the prior, as exem-
plified by a beta-binomial model seen in Table  1, or by 

putting restrictions on the amount of borrowing allowed 
from previous studies, one of the standard ways is to 
control the weight parameter on the external study data, 
which is typically a fractional real number [81, 163–166], 
and calibrate it to satisfy the requirement of the agreed 
maximally allowable type I error rate. In the next section, 
we illustrate the use of a power prior model to leverage 
historical data from a pilot study and explore the influ-
ence of the weight parameter on the frequentist operating 
characteristics of the Bayesian design.

Example ‑ Bayesian borrowing design based on power 
prior
We illustrate a Bayesian borrowing design based on a 
power prior [36, 81] by taking the primary safety end-
point discussed in Example - standard single-stage 
design based on beta-binomial model  section as an 
example. Suppose that a single-arm pilot trial with 
the number of patients N0 = 100 is done under simi-
lar enrollment and treatment criteria as a new piv-
otal trial. The pilot study provides binary outcome data 
yN0 = (y10, · · · , yi0, · · · , yN00)

⊤ for the informative prior 
in the Bayesian power prior method. The power prior 
raises the likelihood of the pilot data to the power param-
eter a0 , which quantifies the discounting of the pilot data 
due to heterogeneity between pilot and pivotal trials:

where x0 =
∑N0

i=1 yi0 represents the number of patients 
who experienced a primary adverse event within 30 days 
after a surgical procedure involving the device in the pilot 
trial.

In the power prior formulation (24), π0(θ) denotes the 
prior distribution for θ before observing the pilot study 
data y0 ; this is referred to as the initial prior. The initial 
prior is often chosen to be noninformative, and in this 
example, we use π0(θ) = Beta(θ |0.01, 0.01).

The power parameter a0 ∈ [0, 1] weighs the pilot data 
relative to the likelihood of the pivotal trial. The special 
cases of using the pilot data fully or not at all are covered 
by a0 = 1 and a0 = 0 , respectively, while values of a0 
between 0 and 1 allow for differential weighting of the pilot 
data. The value a0N0 can be interpreted as the prior effec-
tive sample size, the number of patients to be borrowed 
from the pilot study. The parameter a0 can be estimated 
by using the normalized power prior formulation [163, 
167]. However, in this paper, we fix a0 since our purpose 
is to explore the influence of the power parameter a0 on 

(24)π(θ |yN0 , a0) ∝ f (yN0 |θ)a0 · π0(θ) ∝
{

N0∏
i=1

θyi0(1− θ)1−yi0

}a0

· Beta(θ |0.01, 0.01)

∝ Beta(θ |a0x0 + 0.01, a0(N0 − x0)+ 0.01),
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the frequentist operating characteristics of the Bayesian 
design.

Finally, the posterior distribution, given the outcomes 
from patients in pivotal and pilot trials, is once again the 
beta distribution due to the conjugation relationship:

Building upon the scenario presented in Example - 
standard single-stage design based on beta-binomial 
model section, the sponsor, during the planning stage of 
the pivotal trial, anticipated a safety rate of θa = 0.05 with 
a performance goal set at θ0 = 0.12 . At this stage, yN is 
a random quantity, while yN0 is observed, and a0 is fixed 
at a specific value to control the influence of yN0 in the 
decision-making process. The decision rule states that if 
T (yN , yN0 , a0) = P[θ < 0.12|yN , yN0 , a0] > 0.975 , then 
the null hypothesis H0 : θ ≥ 0.12 is rejected, implying the 
success of the study in ensuring the safety of the device.

Frequentist operating characteristics of this Bayesian 
borrowing design can be summarized by two following 
quantities:

It is important to note that the type I error rate and 
power of Bayesian borrowing designs depend on the pilot 
study data yN0 and the power parameter a0 . In the case 
of no borrowing ( a0 = 0 ), the values of β(N )

θ0
(yN0 , a0) (26) 

(25)π(θ |yN , yN0 , a0) ∝ f (yN |θ) · π(θ |yN0 , a0)

∝ Beta(θ |x + a0x0 + 0.01,N − x + a0(N0 − x0)+ 0.01).

(26)Type I error : β(N )
θ0

(yN0 , a0) = P[T (yN , yN0 , a0) > 0.975|yN ∼ f (yN |θ0), yN0 , a0],

(27)Power : β(N )
θa

(yN0 , a0) = P[T (yN , yN0 , a0) > 0.975|yN ∼ f (yN |θa), yN0 , a0].

and β(N )
θa

(yN0 , a0) (27) reduce to the values of β(N )
θ0

 (7) and 
β
(N )
θa

 (8), respectively. Otherwise ( 0 < a0 ≤ 1 ), the for-
mer values could be significantly different from the latter 
values.

In the following, we explore the operating character-
istics of this Bayesian borrowing design under the two 
different scenarios regarding the direction of the pilot 
study data, whether it is favorable or unfavorable to reject 
the null hypothesis. In the optimistic external scenario, 
x0 = 5 out of N0 = 100 patients experienced the adverse 
event, resulting in a historical event rate of 0.05, which 
is lower than the performance goal of θ0 = 0.12 . In con-
trast, the pessimistic external scenario is where x0 = 15 
out of N0 = 100 patients experienced the adverse event, 
leading to a historical event rate of 0.15, which is higher 
than the performance goal.

Figure 10 displays the probability of rejecting the null 
hypothesis versus the power parameter a0 for the two 

scenarios, provided that the sample size for the pivotal 
trial is N = 150 . The true safety rate θ is set to be either 
θa = 0.05 or θ0 = 0.12 , corresponding to the power and 
type I error scenarios, respectively. In the case of no 

Fig. 10  Null hypothesis rejection rate β(N)
θ = P[T (yN , yN0 , a0) > 0.975|yN ∼ f (yN |θ)] , 

(θ = θa = 0.05 : alternative parameter, θ = θ0 = 0.12 : null parameter) versus power parameter a0 under the optimistic external scenario (Panel a, 
x0/N0 = 5/100 ) and pessimistic external scenario (Panel b, x0/N0 = 15/100 ). Sample sizes of the pivotal and pilot trials are N = 150 and N0 = 100 , 
respectively
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borrowing (that is, a0 = 0 ), the type I error rate is 0.0225, 
and power is 0.8681, which is almost identical to those 
obtained from the Bayesian design with a non-informa-
tive beta prior and the frequentist design based on z-test 
statistics seen in Table 1.

Panel (a) in Fig. 10 demonstrates that, in the optimis-
tic external scenario, the type I error rate (26) and power 
(27) simultaneously increase as the power parameter a0 
increases. Conversely, in the pessimistic external sce-
nario (Panel (b)), the type I error rate (26) and power 
(27) simultaneously decrease as the power parameter a0 
increases. It is important to note that the inflation of the 
type I error in panel (a) and the deflation of the power 
in panel (b) are expected (see Example - standard single-
stage design based on beta-binomial model  section for 
relevant discussion).

The central question at this point is, ‘Is the inflation of 
the type I error rate (26) under the optimistic scenario 
scientifically sound for the regulatory submission?’ To 
answer this question, let us assume that the pilot and piv-
otal studies are very similar and that the pilot study data 
provide high quality so that the two studies are essentially 
exchangeable (refer to Subsection 3.7 in [16] for the con-
cept of exchangeability). Under this idealistic assumption, 
this inflation is a mathematical result due to the opposite 
direction of pilot study data yN0 (favoring the alternative 
hypothesis) and pivotal study data yN (generated under 
the null hypothesis), not due to the incorrect use of the 
Bayesian borrowing design. Therefore, the inflation of the 
type I error rate under the optimistic scenario is scientifi-
cally sound for the regulatory submission only when the 
two studies are exchangeable.

In practice, establishing exchangeability between the 
two studies poses a somewhat intricate challenge, and 
regulatory bodies acknowledge that no two studies are 
entirely identical [16]. Therefore, the key to the successful 
submission of a Bayesian borrowing design is to mitigate 
any potential systematic biases (and consequently the risk 
of incorrect conclusions) when the pivotal study data yN 
appears to be inconsistent with the pilot study data yN0 . 
This ultimately involves finding an appropriate degree 
of down-weighting for the pilot study data when such a 
prior-data conflict is present [168]. However, this is again 
a challenging task because, from an operational view-
point, the pivotal study data yN will be observed upon 
completion of the study, while the pilot study data yN0 has 
already been observed during the planning phase. The 
key difficulty here is that the power parameter a0 should 
be determined in the planning phase specified in the pro-
tocol or Statistical Analysis Plan before seeing any pivotal 
study data yN . One can estimate the power parameter 
a0 through dynamic borrowing techniques [169], but 
such methods may have their own tuning parameters to 

control the power parameter a0 so the central issue does 
not completely disappear.

For this reason, thorough pre-planning is essential 
when employing Bayesian borrowing designs. This neces-
sitates subject matter expertise, interactions, and a con-
sensus among all stakeholders. It is crucial to establish an 
agreement on analysis and design priors, with the latter 
being utilized to assess the operating characteristics of 
the trial design under all conceivable scenarios. In this 
regard, a graphical approach can be used to help select 
design parameters, including the degree of discounting 
for the pilot study data [170].

Figure  11 presents heatmaps for the type I error rate 
(left heatmaps) and power (right heatmaps) to explore 
how changing the power parameter ( a0 ) and sample 
size in the pivotal study (N) impacts the type I error and 
power. As seen from panels (a) and (d), the inflation of 
the type I error under the optimistic external scenario 
and the deflation of power under the pessimistic external 
scenario are evident across the sample size of the pivotal 
trial (N). Another interesting phenomenon is that, as N 
increases, the tendencies of inflation/deflation diminish 
across the parameter ( a0 ), showcasing the Bernstein-Von 
Mises phenomenon [90, 91] as discussed in Asymptotic 
property of posterior probability approach  section. This 
suggests that sponsors can benefit from Bayesian bor-
rowing designs in reducing the sample size N only when 
the pilot study data favorably support rejecting the null 
hypothesis and N is not excessively large. The accept-
able amount of pilot study data to be borrowed should be 
agreed upon in discussions with regulators because infla-
tion of the type I error rate is expected in this scenario.

Conclusions
There have been many Bayesian clinical studies con-
ducted and published in top-tier journals [18, 20, 23, 37, 
171]. Nevertheless, the adoption of Bayesian statistics 
for the registration of new drugs and medical devices 
requires a significant advancement in regulatory sci-
ence, presenting a range of potential benefits and chal-
lenges. In this section, we discuss key aspects of this 
transformation.

Complex innovative trial designs:  The Bayesian frame-
work provides a promising method to address a variety 
of modern design complexities as part of complex inno-
vative trial designs. For example, it enables real-time 
adjustments to trial design, sample size, and patient 
allocation based on accumulating data from subjects in 
the trial. These adaptive features can expedite the devel-
opment of medical products, reduce costs, and enhance 
patient safety: as exemplified in Example - two-stage 
group sequential design based on beta-binomial model 
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and Example - two-stage futility design with Greenwood 
test sections. More recently, platform clinical trials have 
offered a flexible, efficient, and patient-centered approach 
to drug development and evaluation, with the potential 
to improve outcomes for patients and streamline the 
drug development process [9, 172, 173]. While adap-
tive features provide the design with great flexibility, it is 
important to note that such trial adaptations are scientifi-
cally valid only when prospectively planned and specified 
in the protocol or Statistical Analysis Plan, considering 
all alternative scenarios, and when conducted according 
to the pre-specified decision rules [174, 175]. Therefore, 
it is advisable for sponsors to seek early interaction with 
regulators regarding the details of their plans for using 
Bayesian methods [12].

Incorporating prior information:  One defining feature 
of Bayesian statistics is the ability to incorporate prior 
information into the analysis. This contrasts with clas-
sical frequentist statistics, which may use information 
from previous studies only at the design stage. This fea-
ture is invaluable when designing clinical trials, especially 

in  situations where historical or more generally study-
external data are available. The utilization of informative 
priors can improve statistical efficiency and enhance the 
precision of treatment effect estimates. However, it is 
essential to carefully consider the source and relevance 
of prior information to ensure the validity and integrity 
of the trial. Furthermore, as discussed in External data 
borrowing  section, type I error inflation is expected to 
occur in certain situations. More theoretical work needs 
to be done in this area to clarify that the stringent con-
trol of the type I error probability when there is prior 
information is not an appropriate way to think about 
this problem. See Subsection 2.4.3 from [77] for relevant 
discussion.

Rare diseases and small sample sizes:  In the context of 
rare diseases, where limited patient populations hinder 
traditional frequentist approaches, Bayesian methods 
are useful. They allow for the integration of diverse data 
sources, such as historical data or data from similar dis-
eases, to provide robust evidence with a possibly smaller 
sample size than traditional frequentist approaches. 

Fig. 11  Heatmaps to illustrate the frequentist operating characteristics of the Bayesian borrowing design. The y-axis and x-axis represent 
the sample size of the pivotal trial (N) and the power parameter (a0) , respectively. The contents in the heatmaps are the null hypothesis 
rejection rates β(N)

θ = P[T (yN , yN0 , a0) > 0.975|yN ∼ f (yN |θ)] , where the type I error rate and power are obtained by setting θ = θ0 = 0.12 
and θ = θa = 0.05 , respectively
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Obtaining ethical and institutional approval is easier 
in small studies compared with large multicentre stud-
ies [176]. However, as discussed in Asymptotic property 
of posterior probability approach  section, the operating 
characteristics of clinical trial designs with a small sam-
ple size are more sensitive to the choice of the prior than 
those with a moderate or large sample size. This implies 
that smaller clinical trials are more vulnerable to the con-
flict between the trial data and prior evidence than larger 
clinical trials. More research is needed in both regulatory 
science and methodology in this area to mitigate such a 
conflict and ensure a safe path to regulatory submission, 
minimizing potential systemic bias.

Regulatory considerations:  The integration of Bayesian 
statistics into the regulatory setting requires adherence to 
established guidelines and frameworks. In the past dec-
ade, the FDA has recognized the potential of Bayesian 
approaches and has provided guidance on their use [16, 
40, 41, 72]. However, the adoption of Bayesian statistics 
is not without challenges and debates. Some statisticians 
and stakeholders remain cautious about the subjective 
nature of prior elicitation, potential biases, and the inter-
pretation of Bayesian results. The ongoing debate sur-
rounding the calibration of Bayesian methods, particu-
larly in the context of decision-making, underscores the 
need for further research and consensus in the field.

Software implementation  For simple Bayesian designs, 
using built-in R functions or specialized tools like STAN 
[177] and JAGS [178] facilitates power analysis without 
requiring the user to construct an MCMC sampler. Par-
allel computation may not be necessary in these cases. 
However, for complex designs involving multiple arms, 
statistical modeling for enrollment, or multiple interim 
analyses, computational times increase significantly. Par-
allel computing becomes essential, often requiring high-
performance computing resources. Specific expertise in 
Bayesian computation tailored for regulatory submission 
is crucial. Thus, having a skilled Bayesian statistician, 
either as an employee or consultant, is highly beneficial 
for guiding statistical aspects and developing customized 
Bayesian software in R, SAS [179, 180], or similar tools.

In conclusion, the use of Bayesian statistics in clinical tri-
als within the regulatory setting is a promising evolution 
that can enhance the efficiency and effectiveness of the 
development process for new drugs or medical devices. 
However, successful implementation requires rigorous 
prior specification, careful consideration of decision rules 
to achieve the study objective, and adherence to regula-
tory guidelines. The Bayesian paradigm has demonstrated 

its potential in addressing the complexities of modern 
clinical trials, offering a versatile tool for researchers and 
regulators alike. As researchers, clinicians, and regulatory 
agencies continue to explore the benefits of Bayesian sta-
tistics, it is essential to foster collaboration, transparency, 
and ongoing dialogue to refine and harmonize the use of 
Bayesian approaches in clinical trials.
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