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Abstract 

Observational data provide invaluable real-world information in medicine, but certain methodological considerations 
are required to derive causal estimates. In this systematic review, we evaluated the methodology and reporting qual-
ity of individual-level patient data meta-analyses (IPD-MAs) conducted with non-randomized exposures, published 
in 2009, 2014, and 2019 that sought to estimate a causal relationship in medicine. We screened over 16,000 titles 
and abstracts, reviewed 45 full-text articles out of the 167 deemed potentially eligible, and included 29 into the analy-
sis. Unfortunately, we found that causal methodologies were rarely implemented, and reporting was generally 
poor across studies. Specifically, only three of the 29 articles used quasi-experimental methods, and no study used 
G-methods to adjust for time-varying confounding. To address these issues, we propose stronger collaborations 
between physicians and methodologists to ensure that causal methodologies are properly implemented in IPD-MAs. 
In addition, we put forward a suggested checklist of reporting guidelines for IPD-MAs that utilize causal methods. This 
checklist could improve reporting thereby potentially enhancing the quality and trustworthiness of IPD-MAs, which 
can be considered one of the most valuable sources of evidence for health policy.
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Introduction
Randomized controlled trials (RCTs) are often con-
sidered the gold standard for establishing causal rela-
tionships. However, they may not always be feasible or 
ethical, particularly when dealing with exposures that 
cannot be randomized (e.g., cancer, obesity) or other 
exposures that would present ethical issues (e.g., Ebola 
Virus, smoking). Observational study designs are more 
often less resource-intensive and have the ability to eval-
uate the effects of a wider range of exposures than RCTs. 
This can allow for a larger number of individuals to be 
studied over a longer period of time.

In population health or global health science, where 
the goal is to make population-level inferences, meta-
analyzing results from multiple studies can be an effi-
cient and cost-effective way to increase statistical power 
and explore heterogeneity of single study findings across 
different sites, settings or populations [1]. There are two 
ways to conduct a meta-analysis (MA): pooling estimates 
(the traditional approach, also known as an aggregate 
data MA, which we do not review in this paper) and 
pooling individual-level patient data (IPD) to conduct a 
combined analysis. IPD-MAs are widely considered the 
gold standard in evidence-based medicine, as they often 
provide more precise and reliable estimates than MAs of 
aggregate data.

Aggregate data MAs may provide similar estimates to 
IPD-MAs in some settings [2, 3], but they are more prone 
to reporting bias [4], publication bias [5], or low statis-
tical power [6]. IPD-MAs offer several other benefits, 
including the ability to adjust for confounders across 
studies, thereby minimizing the impact of between-study 
heterogeneity and reducing ecological bias [7, 8]. More-
over, data quality can be evaluated (e.g., study design 
features including randomization or follow-up) [9], 
IPD-MAs may have greater power to conduct subgroup 
analyses [9, 10], and they provide an opportunity to test 
assumptions of models and include unreported data [10]. 
However, IPD-MAs also present key challenges, such as 
accessing relevant data sources, data harmonization, and 
handling missing data in each study.

To address threats to internal validity present in obser-
vational studies when estimating causal effects in health 
science, the most commonly used approach is to include 
potential confounders as covariates in a standard regres-
sion-based adjustment (RBA) analysis, which we define 
as the investigation of a statistical relationship between 
a dependent and one (or more) explanatory variables. 
However, RBAs may not adequately control for measured 
confounding in the presence of time-varying confound-
ers affected by prior treatment [11]. Analytical tools such 
as the G-methods (Marginal Structural Models [MSM], 
G-formula, and structural nested models) were developed 

to address these issues [12, 13]. Unmeasured confounding 
is another threat to internal validity in observational stud-
ies. In certain circumstances, data will allow for methods 
such as difference-in-differences [14], interrupted time 
series [15, 16], regression discontinuity design [17], and 
instrumental variables analysis [18, 19], methods which 
can circumvent unmeasured confounding. However, in 
other cases, including a sensitivity analysis for unmeas-
ured confounders might be the only possible approach 
[20]. The strength of the inference relies not only on the 
method selected but also on the rigor with which the 
required assumptions are evaluated and tested.

Several reviews have shown that causal methods, 
which employ statistical techniques beyond above-
mentioned standard RBA analyses, are implemented in 
single observational studies in medicine [21, 22]. How-
ever, a recent review [23] revealed that causal methods 
are rarely applied to IPD-MAs with infectious disease 
data. The objective of this systematic review is to expand 
on the previous review [23], and investigate the rigor in 
the implementation and reporting of causal methods in 
pooled longitudinal IPD studies in medicine.

Methods
Search strategy
The search strategy for this systematic review was devel-
oped by four researchers (HH, LM, EM, SR) and was 
reviewed and edited by information scientists from Uni-
versity Hospital Heidelberg (UKHD), University of Cali-
fornia San Francisco (UCSF), and Harvard University. 
Similar to a previous review on infectious diseases [23], 
we chose not to include names of methods we considered 
“causal” but instead, allowed for methods not considered 
“causal”, such as standard RBAs, to be reviewed to pre-
vent bias in the results. The search strategy was tailored 
to four large platforms so as to include non-medical disci-
plines (EBSCO [PsycINFO, Academic Search Complete, 
Business Source Premier, CINAHL, EconLit], EMBASE, 
PubMed and Web of Science). Details of the search strat-
egy can be found in Supplementary Material 1.

Prior to initiating the systematic review, a protocol 
was registered with PROSPERO (CRD42020143148). 
Studies were included if they (1) posed a clear causal 
question related to the effect of an exposure on a health 
outcome, (2) estimated an effect size directly related to 
the causal question, and (3) pooled longitudinal indi-
vidual-level data from more than one study or cohort. 
If a study pooled longitudinal data from RCTs, it was 
eligible for inclusion as long as not all of the exposure 
variables of interest were randomized (i.e., randomized 
exposures included in the pooled study must have been 
combined with non-randomized exposure variables). 
Furthermore, eligible studies had to be published (4) 
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in the English language, (5) in peer-reviewed journals 
(accessible in full-text through open access, university 
licenses or project collaborators), and (6) in the years 
2009, 2014, or 2019 (according to the electronic pub-
lication date). Due to resource constraints, the review 
was limited to publications at these three time-points, 
which were five years apart. Additional details about 
the study selection process are provided elsewhere [24].

Study selection process
Search results were deduplicated in Endnote [25], ver-
sion X9. Titles, abstracts and full-texts articles were 
screened in COVIDENCE systematic review software 
[26] by two reviewers each (SC, HH, NM, EY) using the 
double-blind tool. Discrepancies were resolved by con-
sensus. This review originally sought to investigate the 
rigor of causal methods implementation and reporting 
across academic disciplines. However, as there were too 
few studies meeting inclusion criteria in non-medical 
fields (5 of 210 articles after title-abstract screening), 
making rigorous comparisons of implementation and 
reporting across disciplines was not feasible. Therefore, 
studies from fields other than medicine were excluded, 
and the focus of this review therefore shifted from 
‘across disciplines’ to ‘within medicine’. As the search 
returned more studies than could feasibly be reviewed, 
we selected a random sample of 20% (n = 24) of eligible 
records using a stratified random sampling approach 
based on the year of publication. Randomly selected 
articles that did not meet the inclusion criteria (n = 11) 
were replaced by another random sample (n = 21) taken 
from the remaining pool of eligible articles.

Data collection process
Data from each article were extracted using a prede-
fined, peer-reviewed extraction form that consisted 
of over 70 points and was based on the PRISMA-IPD 
reporting guidelines [27] related to the pooling of 
studies (see Supplementary Material 2  Data Extrac-
tion Form). The extraction form also contained many 
reporting items related to causal methods implemen-
tation, as published in reporting guidelines for media-
tion analysis [28] and mendelian randomization [29]. 
Extracted data were cross-checked by at least two 
reviewers (SC, HH, NM, EY), and conflicts resolved by 
discussion or a tie-breaker (AD, VDJ). For each study, 
details such as (i) study design, (ii) statistical methods 
implemented, (iii) reporting of methods, and (iv) evalu-
ation of assumptions were extracted.

Data analysis
To measure the quality of reporting across stud-
ies, we developed and applied a scoring system that 
consisted of the following domains: data harmoni-
zation, accounting for missing data, causal meth-
ods, data pooling, and confounder control. Each 
domain included specific criteria related to the qual-
ity of reporting within that domain and was weighted 
equally. If a specific item from the data extraction 
list was not mentioned in the study documentation, 0 
points were awarded. If the item was alluded to but not 
clearly addressed, 0.5 points were awarded. If the item 
was clearly addressed, 1 point was awarded. Findings 
of this systematic review are reported following the 
2020 PRISMA Statement [30].

Results
Study selection
The search strategy yielded 16,443 unique articles. 
Of the 210 articles which were eligible at the initial 
title-abstract phase, seven duplicates and 31 arti-
cles with e-publication dates other than eligible years 
were excluded, as well as the five non-medical articles 
(explained in sections 2.2 Study Selection process), 
resulting in 167 eligible medical articles for full-text 
review (2009, n = 23; 2014, n = 44; 2019, n = 100), 
general medicine (32), neoplasms (24), vascular dis-
ease (23), internal medicine (15), public health (15), 
nutritional sciences (9), neurology (7), endocrinology 
(7), surgery, other specialty (6), environmental health 
(5), psychiatry (5), communicable diseases (4), drugs 
therapy (2), genetics (2), geriatrics (2), pregnancy (2), 
therapeutics (2), allergy and immunology (1), comple-
mentary therapies (1), critical care (1), dentistry (1), 
and metabolism (1). See Supplementary Material 3 Full 
Article List for information on all 167 eligible articles 
as well as the 45 articles which were reviewed in both 
of the random samples. Of the 45 articles reviewed, 29 
articles [31–58] were included in the final analysis (see 
Fig. 1. PRISMA flow diagram).

Study characteristics
Of the 29 IPD-MAs included in the final analysis, two 
were published in 2009, 10 in 2014, and 17 in 2019. The 
included IPD-MAs pooling data from cohort studies, 
RCTs, and case-control studies. The number of studies 
pooled in each IPD-MA ranged from 2 to 37, with an 
average of 12 studies. The pooled sample sizes ranged 
from 156 to 284,345 individuals. See the Supplemen-
tary Material 4. Details of Included Studies for more 
information.
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Reporting results
Results of the data extraction are presented below. 
Please see Table  1 Results in tabular form and Fig.  2 
Summary results for data items that received points for 
more details.

Data harmonization
IPD-MAs were awarded 17 points of 29 possible 
points for describing the definitions and measure-
ments of the variables collected from the individual 

cohorts. For describing the differences in definitions 
and measurements among the variables pooled, IPD-
MAs were awarded 15.5 of 29 possible points, with 11 
IPD-MAs providing insufficient detail, earning them 
a half-point each. IPD-MAs received 24 of 29 possible 
points for describing their efforts to manage the differ-
ences in variable definitions and measurements from 
individual cohorts, such as through harmonization or 
standardization.

Fig. 1 PRISMA flow diagram. Note. ADMA = aggregate data meta-analyses, ePUB = electronic publication, RCTs = randomized controlled trials
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Accounting for missing data
18 of 29 possible points were awarded to IPD-MAs 
for describing the presence of missing data within and 
across studies (e.g. missing at random (MAR), missing 
not at random (MNAR), missing completely at ran-
dom (MCAR)). Two IPD-MAs reported that the data 
was sporadically missing (i.e., data is partly missing in 
variables in one or more individual studies), and none 
of the IPD-MAs clearly labelled data as systematically 
missing (i.e., variables are entirely missing in one or 
more individual studies [59]). Twenty-one IPD-MAs 
were unclear about the type of missingness. One IPD-
MA was awarded one point for a full description of why 
the data were missing, and 20.5 of 29 possible points 
were given to IPD-MAs for describing how the authors 
accounted for missing data.

Imputation model
Of the 10 IPD-MAs using imputation methods to 
account for missing data, five-and-a-half of 10 possi-
ble points were given for listing the variables included 
in the imputation model. None of the IPD-MAs were 
awarded points for justifying the choice of variables 
in the imputation model, and four of the 10 IPD-MAs 
received full points for describing efforts to account for 
potential heterogeneity between studies in the imputa-
tion models.

Data pooling
No points were awarded for discussing assumptions 
required for the methods they have used to pool the 
data, and no IPD-MA received points for describing 

Table 1 Results in tabular form

a  One used mediation analysis and two used propensity score analysis

Data points extracted without point assignment

Use of Weighting 0 studies implemented weighting as part of the causal analysis

Reporting of results OR (16); HR(13); RR(1)
N = 29

Scoring domain Criteria Studies 
receiving 1 full 
point (n)

Studies 
receiving 0.5 
points (n)

Studies 
receiving 0 
points (n)

Total 
Number of 
Studies

Data harmonization measurement & definition of variables 11 (37.9%) 10 (34.5%) 8 (27.6%) N = 29

differences in measurement & definitions 10 (34.5%) 11 (37.9%) 8 (27.6%) N = 29

harmonization/standardization efforts 20 (68.9%) 8 (27.6%) 1 (3.4%) N = 29

Accounting for missing data missing data within and across studies 11 (37.9%) 14 (48.3%) 4 (13.8%) N = 29

reasons/mechanisms of missingness 1 (3.4%) 0 (0%) 28 (96.6%) N = 29

how accounted for missing data 19 (65.5%) 3 (10.3%) 7 (24.1%) N = 29

Imputation Model Variables included in imputation model 5 (50%) 1 (10%) 4 (40%) N = 10

rationale for variables in imputation model 0 (0%) 0 (0%) 10 (100%) N = 10

accounted for heterogeneity in imputation model 4 (40%) 0 (0%) 6 (60%) N = 10

Pooling assumptions to pool data 0 (0%) 0 (0%) 29 (100%) N = 29

testing any assumptions to pool data? 0 (0%) 0 (0%) 29 (100%) N = 29

one-step or two-step 8 (27.6%) 0 (0%) 21 (72.4%) N = 29

Causality causal methods 3 (10.3%) a 0 (0%) 26 (89.7%) N = 29

justification of methods 2 (6.9%) 3 (10.3%) 24 (82.8%) N = 29

state assumptions of analysis methods 4 (13.8%) 0 (0%) 25 (86.2%) N = 29

tested testable assumptions 3 (10.3%) 0 (0%) 26 (89.7%) N = 29

evaluation of untestable assumptions 2 (6.9%) 0 (0%) 27 (93.1%) N = 29

investigated the heterogeneity of results 13 (44.8%) 5 (17.2%) 11 (37.9%) N = 29

the generalizability of results 10 (34.5%) 3 (10.3%) 16 (55.2%) N = 29

Sensitivity analyses 23 (79.3%) 0 (0%) 6 (20.7%) N = 29

Confounder Control how they controlled for clustering 24 (82.8%) 0 (0%) 5 (17.2%) N = 29

labelling of covariates as confounders or mediators 15 (51.7%) 5 (17.2%) 9 (31%) N = 29

how covariates were selected 15 (51.7%) 1 (3.4%) 13 (44.8%) N = 29



Page 6 of 12Hufstedler et al. BMC Medical Research Methodology           (2024) 24:91 

the testing or evaluating of assumptions for the pooling 
method. Eight of the 29 IPD-MAs received full-points 
for clearly stating whether they implemented a one-
step (n = 4) or two-step (n = 4) meta-analysis [60, 61].

Causal methods
Out of the 29 IPD-MAs, three used causal methods (one 
used mediation analysis; two used propensity scores), 
while the remaining 26 used standard regression-based 
analyses, including Cox proportional hazards regres-
sion, logistic regression, and linear regression. While 
most studies reported drawing data from longitudi-
nal studies, exact time-points for variables included in 
the analyses was not clearly reported across IPD-MAs. 
Three-and-a-half of 29 possible points were awarded for 
justifying the choice of method used for causal inference 
or other statistical methods used. Four points out of 29 
were awarded for explicitly stating assumptions required 
for the causal inference or statistical modelling approach 
selected. Three points were awarded for reporting the 
testing at least one of the testable assumptions, all of 
which were proportional hazards assumption. Two IPD-
MAs discussed the evaluation of untestable assumptions 
(e.g., no unmeasured confounding) and thus received 
one point each. No IPD-MA implemented weighting in 
their causal analyses. 15.5 points were awarded to IPD-
MAs for reporting that they investigated the potential 

for heterogeneity in the results. Eleven-and-a-half of 29 
possible points were awarded to IPD-MAs for discussing 
the possible impact of any heterogeneity on the general-
izability of the results. Twenty-three points were awarded 
for the reporting of sensitivity analyses.

Confounder control
Twenty-four points out of 29 were awarded for reporting 
the method(s) used to account for clustering/heterogene-
ity at the cohort level. These methods included stratifi-
cation (n = 12), random effects (n = 9), interaction terms 
(n = 2), confounder adjustment (n = 2), and fixed-effects 
(n = 1). Seventeen-and-one-half points were awarded to 
IPD-MAs for indicating how the covariates were concep-
tualized (e.g., confounders, mediators), and 15.5 points 
were awarded for describing how they selected their 
covariates— e.g., two IPD-MAs [43, 55] reviewed the lit-
erature; one [36] used statistical testing procedures.

Effect estimates
Most IPD-MAs did not clearly report how they 
accounted for (potential) heterogeneity. Due to these 
ambiguities, we used a rough categorization based on 
our assumptions about the authors’ intentions: five IPD-
MAs took strata-specific estimates; three IPD-MAs 
excluded specific patients or data points responsible for 
baseline heterogeneity; two IPD-MAs suggest the use 

Fig. 2 Bowman [62]. Summary results for data items that received points
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of data standardization or harmonization was used to 
account for this; one IPD-MA reported that they found 
no baseline heterogeneity; and the remaining IPD-MAs 
(n = 17) only reported adjusting for variables. It was 
unclear for any of the studies which effect—marginal or 
conditional— was estimated. However, we inferred that 
10 IPD-MAs estimated a conditional effect, one IPD-MA 
estimated a marginal effect, and four IPD-MAs estimated 
both. For the remaining IPD-MAs, no precise statement 
can be made.

Discussion
This systematic review evaluates the use of causal meth-
ods in IPD-MAs in medicine. Specifically, we investigated 
the implementation and reporting of methods to address 
causal questions and the critical role of data handling and 
reporting in this context. Overall, we found that the use 
of standard regression methods was the most common 
approach, and note the lack of utilization of other causal 
methods tailored to address time-varying and unmeas-
ured confounding. While sensitivity analyses can be 
used to alleviate concerns with unmeasured confounding 
[20], these were not reported to have been used. We also 
observed major gaps in the reporting of the methodol-
ogy used in pooled longitudinal, observational studies, 
including issues related to harmonization, missing data, 
and data standardization—all crucial to the implementa-
tion of causal methods. Table 2 provides guidance as to 
the various technical aspects that researchers engaging in 
IPD-MAs should consider for robust and reliable results.

Pooled studies
Our results suggest an increase in the number of pooled 
longitudinal observational studies within the medical 
field between 2009 and 2019. This upward trend mirrors 
the findings of an earlier review [7], and may reflects a 
greater understanding of the importance of IPD-MAs 
[63], improved digitization of records and data sharing 
efforts, and/or improved statistical software (both for 
conducting IPD-MAs as well as causal methodologies).

Causal methods
Although all included IPD-MAs were considered to have 
causal intent, all but three used standard RBA analyses. 
This finding is consistent with other reviews suggesting 
underutilization of causal methods in medicine or medi-
cal subfields [21, 23, 64]. This may be due to the high 
variability in data elements and study designs, which can 
pose challenges in applying certain methods for pooled 
data as compared to analyzing a single dataset. Alterna-
tively, it could reflect a general lack of knowledge about 
or understanding of how to apply these methods to 
pooled studies. To address these issues, investigators may 
want to review (introductory) articles on causal methods 
[65–67]. We want to point out that no one method is uni-
versally better suited for one scientific field over another. 
Rather, each of these causal methods entail tradeoffs 
[68], and the choice of method should be determined by 
the research question at hand and the data available. In 
the context of causal analysis, researchers often rely on 

Table 2 Technical considerations required by IPD-MAs

Technical considerations Descriptions

Harmonization Harmonization efforts often require intensive feedback from stakeholders and can therefore take an enormous amount 
of time—one study reported that their harmonization took nearly two years [70], and a report by Cochrane Group mem-
bers suggested that researchers should not expect their first publication before 3 years [9].

Missing Data What to do with missing data becomes more complex as studies are combined into one meta-analysis as the reasons 
for missingness (varying protocols for measurement; some studies may not capture the variable of interest; or, if studies all 
capture the variable of interest, the reason for its missingness may also vary across studies). The choice methods to account 
for these differences, then, require additional consideration, e.g., omission, imputation. And, if the choice for imputation 
is made, thoughtful decisions about imputation models and the order in which to conduct the next steps (one-step, two-
step, Rubin’s rules) are required.

Pooling There are trade-offs with both methods [71]: one-step meta-analysis methods require advanced statistical know-how, 
and two-step methods, though employing more widely-known methods (e.g. random-effects or inverse-variance fixed-
effects), are a more arduous endeavor. Two-step methods were the more dominant across all medicinal fields in the past, 
but the one-step methods have been increasing some medical fields as knowledge of and software to assist have 
improved [72]. In fields like epidemiology, one-step methods have been said to be the dominant choice due to adjust-
ment for covariates other than treatment.

Causal Methods As this review showed, authors of studies included in this review focused their reporting on confounding control. However, 
there are additional forms of bias which can be present in longitudinal studies, whether purely observational or pooled 
with RCTs, such as time-varying confounding. Causal methods can be extremely beneficial to remove some forms of bias, 
e.g., unmeasured confounding, time-varying confounding. Some of these methods are common in the disciplines 
where they were created, e.g., Regression Discontinuity in Economics, but have been recently increasing in medicine. 
Implementing these novel methods across multiple studies with different study designs may require additional time 
and resources initially but may yield powerful results for the field of global health and population medicine.
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tools like Directed Acyclic Graphs (DAGs) to map the 
(assumed) relationships between factors, allowing them 
to identify potential confounders and mediators, e.g., 
and understand what variables need to be controlled or 
adjusted for [69]. This approach can provide valuable 
insights into the causal relationships under investigation 
and enhance the validity of results.

Several previous reviews have identified discrepan-
cies in causal effects between RCTs and observational 
studies with the same exposures and outcomes [73]. As 
researchers in academia and industry are increasingly 
interested in the use of real-world evidence for regulatory 
decision making, IPD-MAs and other approaches to the 
pooled analyses of multiple longitudinal studies should 
consider applying causal methods (e.g., G methods with 
IV approaches) to account for time-varying confounding 
and unmeasured confounding.

Reporting guidelines
While many IPD-MAs included in this systematic review 
reported variable definitions, measurement methods, 
and efforts to harmonize data, they would benefit from 
reporting additional details like, e.g., between-study dif-
ferences in measurement methods and variable defini-
tions, which were rarely discussed and may affect the 
validity and interpretation of causal effect estimates.

When following best practices for harmonization [74], 
authors should consider reporting their detailed efforts in 
appendices, where there is ample space. However, we found 
that descriptions of data standardization were low, poten-
tially due to a lack of lack of understanding of data standard 
availability, usability, or lack of feasibility of implementation 
based on specific needs of epidemiological studies.

Our review also revealed that few of the included IPD-
MAs described the type of missing data present; either 
sporadically missing values, when these data are missing 
on observations within a particular study, or systemati-
cally missing, when variables are not defined consistently 
across studies and therefore missing entirely from spe-
cific studies [59]. Many studies simply omitted partici-
pants with missing data, using complete cases, a common 
practice in medicine. Although multiple imputation is 
generally recommended to account for missing data, the 
implementation becomes problematic when variable def-
initions or measurement methods differ across studies. 
For this reason, several multi-level imputation methods 
have been proposed that are better capable of preserv-
ing between-study heterogeneity and uncertainty when 
imputing missing data in IPD-MA and other types of 
pooled cohort studies [75].

The strength of causal inferences that can be made 
from any approach rely on the rigor with which 

assumptions were tested (if testable) or evaluated (if 
untestable). Although there are many forms of bias that 
can adversely influence the results of a study (e.g., reverse 
causation, measurement error), authors reported almost 
entirely on confounding bias. We would recommend that 
the authors explicitly report other forms of bias that they 
considered in their analysis, both to make the interpret-
ability of their results transparent and to inform future 
studies on similar research questions.

There are reporting guidelines which exist in JAMA for 
mediation analyses [28] and mendelian randomization 
analyses [29], as well as reviews of and suggested report-
ing checklists for Instrumental Variable analyses [76, 77] 
but all of these publications appear to be intended for use 
in single studies. In addition, despite reporting guide-
lines existing for IPD-MAs [27], researchers have previ-
ously reported lower-than-desired reporting patterns 
from authors of IPD-MAs with regards to their statisti-
cal methods [23, 72]. There are currently no reporting 
guidelines for IPD-MAs which employ causal methods. 
We, therefore, propose that reporting guidelines for 
pooled studies employing causal methodologies be devel-
oped (see Supplementary Material 5  Proposed Report-
ing Guidelines Checklist for IPD-MAs implementing 
Causal Methods), based on the aforementioned pub-
lished reporting guidelines (see Supplementary Material 
6 Reporting Guidelines Comparison). We would appreci-
ate any feedback to the proposed checklist.

Strength and limitations
Strengths of our systematic review include the search 
strategy, which was built on other systematic reviews 
of non-randomized exposures and reviews of similar 
methods and was also built in consultation with three 
experienced librarian scientists, and with input from 
colleagues in other fields regarding synonyms that 
could be used in other disciplines. The search strategy 
was also implemented in non-medical platforms to 
ensure potential identification of non-medical articles. 
The strategy also did not employ specific names, or 
variations of or acronyms of the names of the methods, 
so as not to bias our results by including only meth-
ods which we considered “causal”. Another strength is 
the sheer number of articles that we screened and data 
points that we extracted—nearly four and six times 
the number of titles and abstracts screened by similar 
reviews [21, 22], and far exceeded the extraction num-
bers of those same reviews (five and 24 items to our 
70 + items).

Weaknesses of our systematic review include the 
scarcity of articles found from disciplines other than 
medicine. This low number could be because health 
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outcomes from pooled data sets are not often being 
investigated in disciplines other than medicine, but we 
must also consider the possibility that this small num-
ber we found is related to the search strategy, despite 
the rigor with which it was built. We also recognize 
that the global generalizability of our results is limited 
due to language and year restrictions. We must also 
consider that, although we appeared to reach theoreti-
cal saturation, our findings may be limited by the fact 
we were only able to review roughly 27% of potentially-
eligible full-text articles. Another limitation is that the 
review was limited to the reporting of the use of causal 
methods in IPD-MAs with in medicine which may 
not reflect what was actually done. Further, it is pos-
sible that we included some studies that did not (pri-
marily) aim to infer a causal relationship as the study 
aims were not always entirely clear. We attempted to 
counter subjectivity with blind assessment by at least 
two reviewers per study, rounds of discussion between 
reviewers in case of disagreement, and consultation 
with additional scientists from four universities across 
four countries.

Conclusions
To encourage better reporting and implementation 
of causal methods in future pooled longitudinal IPD 
studies, we propose the following approaches. First, 
we suggest that authors always clearly describe their 
methods. The domain criteria evaluated in this study 
can serve as a basis for developing or building on exist-
ing reporting standards. Although most medical jour-
nals set a predefined word limit for publications, the 
appendix, which usually has no word limit, is a simple 
way to include an in-depth description and justifica-
tion of each aspect of the methodological approach. 
Second, the research community could publish acces-
sible “how-to” documents that apply causal inference 
methods to pooled IPD studies and are accompanied 
by open-source data and code to ensure that inves-
tigators can better apply these methods to studies 
that pool longitudinal, observational data. This will 
lower the barrier to engaging with appropriate and 
potentially unfamiliar methods and could ultimately 
increase application of these methods in the broader 
research contexts, as well as inform health policy and 
decision making.
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