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Abstract 

Background  Accurate prevalence estimates of drug use and its harms are important to characterize burden 
and develop interventions to reduce negative health outcomes and disparities. Lack of a sampling frame for mar-
ginalized/stigmatized populations, including persons who use drugs (PWUD) in rural settings, makes this challeng-
ing. Respondent-driven sampling (RDS) is frequently used to recruit PWUD. However, the validity of RDS-generated 
population-level prevalence estimates relies on assumptions that should be evaluated.

Methods  RDS was used to recruit PWUD across seven Rural Opioid Initiative studies between 2018-2020. To evalu-
ate RDS assumptions, we computed recruitment homophily and design effects, generated convergence and bot-
tleneck plots, and tested for recruitment and degree differences. We compared sample proportions with three 
RDS-adjusted estimators (two variations of RDS-I and RDS-II) for five variables of interest (past 30-day use of heroin, 
fentanyl, and methamphetamine; past 6-month homelessness; and being positive for hepatitis C virus (HCV) anti-
body) using linear regression with robust confidence intervals. We compared regression estimates for the associations 
between HCV positive antibody status and (a) heroin use, (b) fentanyl use, and (c) age using RDS-1 and RDS-II prob-
ability weights and no weights using logistic and modified Poisson regression and random-effects meta-analyses.

Results  Among 2,842 PWUD, median age was 34 years and 43% were female. Most participants (54%) reported 
opioids as their drug of choice, however regional differences were present (e.g., methamphetamine range: 4-52%). 
Many recruitment chains were not long enough to achieve sample equilibrium. Recruitment homophily was present 
for some variables. Differences with respect to recruitment and degree varied across studies. Prevalence estimates var-
ied only slightly with different RDS weighting approaches, most confidence intervals overlapped. Variations in meas-
ures of association varied little based on weighting approach.
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Conclusions  RDS was a useful recruitment tool for PWUD in rural settings. However, several violations of key RDS 
assumptions were observed which slightly impacts estimation of proportion although not associations.

Keywords  Respondent-driven sampling, Opioids, Methamphetamine, Drug use, Rural health

Background
The United States (US) opioid overdose epidemic remains 
a challenging public health issue [1–4], particularly as 
the epidemic evolves and becomes more complex, with 
the increasing co-use of stimulants and opioids [5]. The 
absence of a sampling frame for marginalized and/or 
highly stigmatized populations (e.g., people who use drugs 
[PWUD]) makes it challenging to generate accurate prev-
alence and incidence estimates of drug-related risk behav-
iors and health outcomes, especially in rural settings. 
Respondent-driven sampling (RDS), a modified form 
of chain referral sampling, has successfully been used 
to recruit PWUD in a range of research contexts. While 
there are examples of using RDS to recruit PWUD in 
rural settings [6, 7], this has been more limited. RDS uses 
incentives for both study participation and peer recruit-
ment and uses sampling weights to offset non-random 
recruitment. The validity of the RDS-adjusted prevalence 
estimates, however, relies on assumptions which are often 
not empirically evaluated or reported in the published lit-
erature [8] and have been violated in some research with 
rural PWUD [6, 7]. In particular, the presence and impact 
of homophily, or the tendency for participants to prefer-
entially recruit peers with similar behaviors or character-
istics, should be assessed. Further, different approaches 
and RDS estimators have been developed to offset sam-
pling biases and each has different assumptions.

RDS‑I estimator
The RDS-I estimator, also known as the Salganik-Heck-
athorn estimator, is based largely on Markov chain the-
ory and social network theory. RDS-I sampling weights 
incorporate information on cross-group recruitment 
and personal network size/degree (hereinafter referred 
to as degree), defined as the number of people in the 
target population that a respondent reports know-
ing [9, 10]. Briefly, the RDS-I estimator assumes that: 1. 
Respondents are members of a target population, which 
is completely connected and where every member of the 
population can reach every other member through their 
connections to others in the population; 2. Respondents 
can accurately report their degree; 3. Individuals recruit 
from their personal network at random and recruit-
ment ties are reciprocal, such that one’s likelihood of 
being recruited to the study is proportional to degree; 4. 
Recruitment patterns depend only on the recruiter and 

not on the recruiter’s recruiter; 5. Cross-group recruit-
ment is sufficient (i.e., recruitment homophily is low), 
such that once a respondent with a specific characteristic 
is recruited, future recruits are not exclusively those with 
the same characteristic; and 6. Recruitment is sufficiently 
deep to overcome bias introduced by the convenience 
sample of seeds [11].

RDS‑II estimator
The RDS-II estimator, also known as the Volz-Heck-
athorn estimator, was proposed to address some of the 
biases associated with the RDS-I estimator. Like the 
RDS-I estimator, weights are based on degree, however 
unlike the RDS-I estimator, weights are based on each 
individual’s degree instead of the average degree in a 
group. Additionally, it does not account for homophily, or 
cross-group recruitment. The RDS-II estimator assumes 
that: 1. Respondents are members of a completely con-
nected network with a finite (but large) population size; 
2. Recruitment ties are reciprocal; 3. Respondents can 
accurately report their degree; 4. Respondents recruit 
those from their personal network at random; 5. Each 
respondent recruits only one peer and sampling occurs 
with replacement; and 6. The sampling fraction is small 
but recruitment is sufficiently deep to overcome bias 
introduced by the convenience sample of seeds [12, 13].

Both RDS estimators make complex assumptions that 
are often difficult to fully evaluate using empirical data 
[13] and there is not a clear test of which estimator is less 
biased [14]. A previous RDS analysis comparing chain 
length suggested that studies with a lot of seeds and 
short chains might converge more quickly on the under-
lying population levels using the RDS-II estimator [14]. 
However, the estimates of proportion would still be sus-
ceptible to high-degree participants being captured dif-
ferentially. Nevertheless, cases of extreme homophily or 
homophily among the seeds (themselves) could impact 
findings, particularly in a rural environment with a large 
number of seeds, and it is not possible to tell which esti-
mator actually has the least bias using empirical data. 
Simulation studies [15], using assumptions about the 
data generating process, often arrive at different conclu-
sions than empirical work, highlighting the need to better 
understand the recruitment process using empirical data.

Prior studies have suggested that RDS studies need 
to more comprehensively report the methods used and 
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consider following the STROBE-RDS guidelines to make 
approaches and assumptions clearer [16, 17]. In this 
study we aimed to: 1. Describe the RDS methodology 
used in a multi-site consortium of PWUD in rural set-
tings; 2. Evaluate whether the RDS assumptions were met 
in the seven ROI studies; 3. Compare sample prevalence 
estimates and RDS-adjusted prevalence estimates; and 
4. Compare the direction and strength of associations 
observed when regression analyses are conducted using 
unweighted, RDS-I and RDS-II-weighted data.

Methods
Consortium
The National Institute on Drug Abuse (NIDA), in part-
nership with the Appalachian Regional Commission 
(ARC), the Centers for Disease Control and Prevention 
(CDC), and the Substance Abuse and Mental Health Ser-
vices Administration (SAMHSA), funded the Rural Opi-
oid Initiative (ROI) cooperative agreement consortium to 
better understand and address the opioid and injection 
drug use crisis across rural America [18].

Recruitment and eligibility
The ROI consortium consists of 8 studies, 7 of which had 
relevant data available and are included here. Each ROI 
study was located in a rural community impacted by the 
opioid overdose epidemic (see Supplemental Figure  1 
[ROI Map]; Illinois: IL, Kentucky: KY, North Carolina: 
NC, New England: NE [11 rural counties in Massachu-
setts, New Hampshire, and Vermont], Ohio: OH, Oregon: 
OR, Wisconsin: WI, and West Virginia: WV) [18]. Par-
ticipants were recruited using RDS between 2018-2020. 
Given regional differences in demographic characteris-
tics and substance use patterns, there were slight differ-
ences in the eligibility criteria, approach for identifying 
seeds, incentives, number of peer recruits permitted per 
person, and the wording of the degree question (see 
details for each study in Supplemental Table 1 [STROBE 
Checklist]). In brief, participants were eligible to par-
ticipate if they were residents of the study area, met age 
requirements (≥18 years of age for 5 sites and ≥15 years 
of age for two sites) and reported injection of any drug to 
get high or non-injection use of opioids to get high in the 
past 30 days.

Recruitment was initiated by seeds. In KY, PWUD with 
large networks identified in a previous study [19] were 
selected as seeds, but other sites did not impose network 
size criteria (Table 1). Across all seven sites, eligible and 
enrolled peer-recruiters and seeds could recruit 3-7 eli-
gible peers, with this process continuing until sample 
size goals were met. Incentives were offered for initial 
participation ($20-$45) and peer-referral ($10-$20 per 
eligible peer referred/enrolled), depending on study and 

local research conditions. Each study collected quantita-
tive data from PWUD using a harmonized instrument. A 
standard degree question assessed each participant’s self-
reported degree (see wording in Supplemental Table 1) at 
all sites except NE, where degree was estimated by count-
ing the number of network members listed in the social 
network inventory who were perceived to inject drugs or 
use opioids.

RDS diagnostics
Cytoscape software was used to visualize recruitment 
chains across studies (see Supplemental Figure 2 [recruit-
ment diagrams]) [20, 21]. We generated convergence and 
bottleneck plots and computed degree and recruitment 
differences, recruitment homophily, and design effect for 
key, self-reported variables collected using the core ROI 
baseline questionnaire (age [continuous and categorical, 
<25, 25-34, 35-44, 45-54, and ≥55 years], current drug of 
choice for ‘getting high’ [heroin, methamphetamine, or 
other drug], past 30-day use of heroin, past 30-day use 
of fentanyl, past 30-day use of methamphetamine, being 
positive for HCV antibody, and homelessness in the past 
6 months).

Differences in degree are presented as degree ratios 
relative to a reference group (i.e., mean network size for 
those with a particular attribute/characteristic category 
compared to those with a different value), and recruit-
ment differences are similarly presented [20, 21]. We 
tested for degree and recruitment differences using the 
RDS package (version 0.9-3) [22] and chords package 
(version 0.95.4) in R. Recruitment homophily was meas-
ured as the ratio of the number of recruits who have the 
same attribute of interest as their recruiter to the number 
we would expect by chance for that recruitment chain. 
When recruitment homophily for a particular variable is 
close to 1.0, it indicates that there is not much recruit-
ment homophily on that variable (so smaller sample sizes 
will be needed) [23]. When homophily is greater than 
1, individuals tend to recruit peers who are similar with 
respect to that attribute; homophily values of ≥1.3 indi-
cate high homophily. A homophily value <1 indicates 
that individuals tend to recruit peers who are dissimilar 
with respect to the characteristic/attribute of interest. 
Design effect is measured as the ratio of the observed 
variance under RDS to that which would be expected 
for the same estimate under a simple random sampling 
scheme and indicates the increase in sample size required 
when using RDS to achieve the same power versus sim-
ple random sampling. Lastly, we used the model-based 
approach of Berchenko et  al. [24] to incorporate infor-
mation on the timing of recruitment to estimate how 
much faster high-degree participants were recruited 
using the theta parameter, also known as the coefficient 
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of discoverability. We computed the average degree and 
number of peer recruits by each variable of interest.

Prevalence estimates
We computed sample proportions, or unweighted prev-
alence estimates, and three RDS-adjusted population 
proportions, or population prevalence estimates, for five 
key variables of interest: past 30-day use of heroin, fen-
tanyl, and methamphetamine; homelessness in the past 
6 months; and HCV positive antibody status. The RDS-
adjusted population proportions were calculated using: 
[1] RDS-I accounting for homophily on drug of choice; 
[2] RDS-I accounting for homophily on age (categorical), 
and [3] RDS-II. Seeds were included in analyses and par-
ticipants with missing data on key variables of interest 
were removed. All prevalence estimates were computed 
using linear regression with robust confidence intervals. 
Sensitivity analyses were conducted to compare the tree 
bootstrap approach of Baraff et  al. to the use of robust 
confidence intervals [25]. We explored the possibility of 
seed bias by removing seeds and comparing estimates, 
similar to approaches used by Lachowsky et al. [26] who 
explored various seed deletion approaches. We also com-
pared the magnitude and direction of effect estimates for 
the associations between the past 30-day fentanyl use and 
HCV positive antibody status, past 30-day heroin use and 
HCV positive antibody status, and age and HCV positive 
antibody status when RDS sampling weights were and 
were not applied to the data using relative risk regres-
sion using the modified Poisson regression approach of 
Zou et al. [27] and traditional logistic regression. To get 
a pooled estimate across studies we used an inverse-var-
iance weighted meta-analytic approach to pool estimates 
[28]. Unless otherwise noted, regression analyses were 
completed in Stata version 17 (StataCorp, College Sta-
tion, TX).

Results
A total of 2,893 PWUD from 7 ROI studies were 
enrolled. After removing 20 duplicate participants and 
their 31 downstream recruits (Table  1; see details for 
each study in Supplemental Table  1  [STROBE Check-
list]), the resulting overall sample size was 2,842 (sample 
size range: 166-973 PWUD per study, Table 2). The num-
ber of seeds per study ranged from 42-53 for all studies 
other than WI, the largest study, which used 273 seeds 
(Table  1). Non-generative seeds were common, with 4 
of 7 studies having 43-51% of seeds who did not recruit 
any additional participants (range 25-72%, Table 1). The 
proportion of seeds with ≥5 waves of recruitment was 
low across studies (overall: 8%, range: 2-22%), with an 
overall median wave size of 1 (range: 0-14); no study 

had a median wave size >1 (see Supplemental Figure  2 
[recruitment diagrams]).

Cohort description
Across the 7 ROI studies, the median baseline age was 
34 years (interquartile range [IQR]: 28-42) (Table 2). The 
cohort included 57% men, 43% women, and 1% transgen-
der participants and 83% were non-Hispanic white. Over 
half (53%) reported homelessness in the past 6 months, 
although this varied across studies (range: 36-68%). Over-
all, most participants identified opioids as their preferred 
drug for getting high (54%), however this varied across 
studies (range: 38-77%), followed by methamphetamines 
(36% overall: ranging from 4% in NE to over half of par-
ticipants in OR and WI). Heroin was the most commonly 
preferred opioid (38%), followed by prescription opioids 
(9%), buprenorphine (3%), and fentanyl (2%). In the 30 
days prior to interview, 86% of participants reported hav-
ing used opioids, 36% reported having used fentanyl, 76% 
reported having used methamphetamine, 43% reported 
having used cocaine/crack, and 47% reported having 
used benzodiazepines. Polysubstance use was extremely 
common, with 85% of the overall sample reporting using 
multiple classes of drugs in the prior 30 days (median=3 
drug classes). A large majority (92%) of participants 
reported ever injecting drugs, and across studies between 
72% and >99% reported injection drug use in the past 30 
days. Overall, missing data across key variables was low, 
ranging from 0% for age to 8.8% for HCV antibody sta-
tus (see Supplemental Table 2 for missingness of key vari-
ables by study).

Convergence and bottleneck plots
Convergence was not always achieved for the five key 
variables, as indicated by the last 25% of recruited par-
ticipants having different characteristics than the first 
75% (see Supplemental Figure  3 [study-specific conver-
gence plots]). This pattern indicates that further sampling 
could have changed the prevalence estimates. For exam-
ple, when comparing the estimated percentage in the first 
75% of participants to the final complete group, home-
lessness in the past 6 months went from 40% to 55% in 
IL, past 30-day heroin use went from 57% to 47% in NC, 
HCV positive antibody status went from 62% to 57% in 
NE, methamphetamine as drug of choice went from 16% 
to 23% in OH and from 45% to 52% in WI, and heroin as 
drug of choice went from 39% to 34% in OR. In contrast, 
fentanyl for example converged quickly at multiple sites 
such as in WI, where past 30-day fentanyl use converged 
around 15% and remained consistent for most of study 
recruitment.

Bottlenecks were also present, with different recruit-
ment chains converging on different prevalence estimates 
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or failing to converge, even when the variable converged 
across the full sample (see Supplemental Figure 4 [study-
specific bottleneck plots]). For example, past 30-day fen-
tanyl use converged in the WI sample, however there 
were distinct bottlenecks by recruitment chain which 
failed to converge. Similarly, in KY, the longest recruit-
ment chain converged to ~12.5%, but other chains did 
not converge or trended in different directions (i.e., one 
chain was approaching 50% and another approached 
25%), suggesting that the recruitment chains may repre-
sent distinct subgroups, rather than the same underlying 
population.

Degree and recruitment differences
Large degree ratios were present for some variables, 
indicating a potential for large weights to influence 
RDS-adjusted prevalence estimates (see Supplemental 
Table  3  [mean degree and degree differences]). Those 
with higher degrees tended to be younger, HCV anti-
body-positive, have experienced homelessness in the past 
6 months, and have reported past 30-day heroin, fenta-
nyl, and methamphetamine use. Recruitment trends did 
not always mirror trends in reported degree (see Sup-
plemental Table 4 [mean number of recruits and recruit-
ment ratios]).

Recruitment homophily
Homophily for key variables varied across studies and 
was generally higher for age (range: 1.10 to 1.48 with age 
as a categorical variable) and drug of choice for getting 
high (range: 1.13 to 1.55) (Table 3). Homophily for past 
30-day methamphetamine use was high in IL; homophily 
for past 30-day heroin use varied by study and was high 
for NC, OH, WI, OR, and IL, and past 30-day fentanyl 
use homophily was high only in NC and OH. The highest 
homophily for homelessness was reported in NE (1.18) 
and the highest homophily for HCV positive antibody 
status was reported in KY (1.18).

Design effects
The average design effect varied by outcome of interest 
and by study. The average design effect across all out-
comes and studies was 3.0. Design effects for past 30-day 
heroin use ranged from 2.48 (KY) to 5.23 (IL); past 30-day 
fentanyl use ranged from 1.52 (OR) to 4.97 (IL); past 
30-day methamphetamine use ranged from 1.92 (KY) to 
3.04 (NC); HCV positive antibody status ranged from 
2.46 (KY) to 5.42 (IL); and homelessness (past 6 months) 
ranged from 2.50 (NE) to 4.26 (IL) (Table 3).

Coefficients of discoverability
The coefficient of discoverability, or theta, estimates 
how much network size impacts the chance of being 

recruited. Theta was larger, at approximately 1.3, for 
NC, NE, and WI, suggesting that larger network size 
increased the speed of recruitment quite substantially for 
those with larger networks (Table 3). For IL, OH, and OR, 
theta was 1.12, 1.05, and 1.02 respectively, indicating that 
those with a larger network size were recruited moder-
ately more quickly. Theta was <1.0 in KY, meaning that 
those with a larger network size were recruited into the 
study slower.

Comparisons of RDS prevalence estimators and regression 
results
Prevalence estimates for all five key variables using RDS-I 
weights were similar to the unweighted prevalence esti-
mates (Table  4). The largest differences in prevalence 
estimates were observed between unadjusted and RDS-
II-adjusted estimates. This same pattern was seen in the 
fentanyl-HCV positive association estimates, with the 
unweighted and RDS-I weighted odds ratios/relative risks 
and corresponding confidence intervals being very close. 
The RDS-II weighted association was the most different 
and had the largest confidence intervals. RDS-II weights 
are based solely on degree and do not account for homo-
phily, or cross-group recruitment, like the RDS-I esti-
mator does; however, RDS-II degree weights are based 
on each individual’s degree and RDS-I degree weights 
are based on the average degree in a group. The use of 
tree-based bootstrapping and deletion of seeds from the 
dataset did not show any large or systematic change to 
the estimation of prevalence (Supplemental Table 5 [tree-
based bootstrapping] Supplemental Table  6 [seed-bias 
analysis]). All three estimates of association were simi-
lar across all four weighting strategies in the same direc-
tion and similar magnitude (Table  5, Fig.  1 [forest plots 
of measures of association: relative risk], Supplemental 
Figure  5 [forest plots of measures of association: odds 
ratios], Supplemental Figure  6 [forest plots of measures 
of association by site: relative risk], Supplemental Table 7 
[seed-bias analysis of association]).

Discussion
RDS was used to successfully recruit PWUD from 
seven rural regions across the United States suggest-
ing the potential for RDS to recruit individuals that are 
sometimes difficult to recruit. This paper advocates for 
comparing different RDS-estimators for this and other 
difficult to recruit populations, which may have large 
numbers of unproductive seeds and many short chains, 
as a way of evaluating the sensitivity of estimates to the 
different estimators. Some studies modified RDS recruit-
ment procedures to meet enrollment goals, which could 
have impacted meeting RDS assumptions. For example, 
when seeds were unproductive or recruitment chains 
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failed to produce additional recruits, studies enrolled 
additional seeds to reach the desired sample size. This 
additional seed recruitment resulted in many short 
recruitment chains (including 251 unproductive seeds 
and 376 seeds who only recruited one additional par-
ticipant). Enrolling a large number of seeds can produce 
larger design effects (and higher homophily), prevent 
sample estimates from converging or reaching sample 
equilibrium, and increase the likelihood of observing 
bottlenecks which represent distinct sub-populations 
with different characteristics. Some studies permitted 
individuals to recruit up to 7 peers (although that was 
rare). Because individuals tend to recruit others who are 
more similar to themselves than to a randomly sampled 
individual from the target population, this could poten-
tially increase homophily and result in larger design 
effects. Increasing the number of peer recruits per partic-
ipant can also reduce the likelihood of achieving conver-
gence on key variables because a majority of the sample 
is comprised of short chains, which individually have not 
reached sample equilibrium. Given the high homophily 
observed on some variables and lack of convergence on 
some key study variables, the RDS estimators used can-
not adjust for biases introduced through sampling. That 
said, the proportionately large numbers of seeds and 
short chains may have reduced the impact of homoph-
ily. The initial sample may have been sufficiently diverse, 

i.e., seed bias was not detected, despite subsequent peer 
recruitments being correlated and demonstrating homo-
phily on key variables. These patterns also may explain 
why tree bootstrapping did not outperform robust confi-
dence intervals. As these patterns or outcomes were not 
predicted a priori, caution is warranted with respect to 
inference despite the overall recruitment success.

Recruitment differences across studies were observed 
on several key variables. Other unmeasured demo-
graphic, geographic, or outcome factors might also vary. 
Some of the observed differences were in opposite direc-
tions than the differences observed by degree, making it 
even more important to compare modeling strategies to 
see whether alternate modeling assumptions are impact-
ful on the results. Of note, both RDS estimators used 
here include weights to account for differences in degree, 
but the RDS-I estimator additionally accounts for differ-
ences in cross-group recruitment. However, each RDS-I 
estimator accounts for differences in recruitment for only 
one variable at a time (i.e., differences in recruitment by 
age category or drug of choice), when recruitment dif-
ferences and homophily were observed for multiple vari-
ables in the same study. As seen in the bottleneck plots, 
estimates across recruitment chains also varied and esti-
mates within chains often did not converge, even when 
estimates across the larger sample did. In instances where 
bottlenecks are present and estimates are divergent for 

Fig. 1  Forest plots of unweighted and RDS-weighted measures of association for the relationship between (a) fentanyl use, (b) heroin use, and (c) 
age and positive Hepatitis C Virus antibody status. Abbreviations: HCV, hepatitis C virus. Reference period for fentanyl and heroin use: past 30 days
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those in distinct recruitment chains, the standard rec-
ommendation would be to analyze these chains sepa-
rately, as they likely represent distinct populations and 
not one completely connected to underlying population. 
For those variables where the estimates in the bottleneck 
appear to be converging to a common estimate, but esti-
mates lack convergence in the same recruitment chain, 
the suggestion would be to continue recruitment until 
equilibrium is attained.

Furthermore, the presence of bottlenecks (i.e., differ-
ent recruitment chains converge at different estimates) 
and the lack of cross-site recruitment within ROI studies, 
suggest that rather than sampling from one completely 
connected population, each RDS sample likely consists 
of multiple sub-populations. Simulation studies have 
demonstrated that these biases can be reduced when 
homophily is low and recruitment chains are long [29]; 
however, many RDS samples (similar to those observed 
here) consist of many short, wide recruitment chains, 
which may not be sufficient to remove seed bias and may 

also introduce bias related to differential recruitment 
behavior [29].

Bias can also be introduced when individuals prefer-
entially recruit peers with similar characteristics (i.e., do 
not randomly recruit peers from their personal network) 
or the number of peer recruits differs by individual-level 
characteristics (i.e., differential recruitment success). This 
bias due to homophily can be particularly problematic 
when recruitment chains are short and wide rather than 
long and deep (i.e., few seeds, each recruiting a small 
number of peers, and recruitment chains which are suf-
ficiently deep) and estimates for key characteristics have 
not converged (i.e., equilibrium has not been reached). 
A related bias, seed bias, occurs when the final sample 
is heavily influenced by the initial sample of seeds. For 
example, if most of the selected seeds use heroin and 
recruitment differs by heroin use (i.e., those who use 
heroin recruit more peers than those who do not use 
heroin), as well as high homophily on heroin (i.e., those 
who use heroin are more likely to recruit others who 

Table 1  Key characteristics of RDS recruitment methodology in the Rural Opioid Initiative by study

Abbreviations: IL Illinois, KY Kentucky, NC North Carolina, NE New England (Massachusetts, New Hampshire, Vermont), OH Ohio, OR Oregon, WI Wisconsin
a Seeds had to be “highly connected,” which was defined as reporting having used drugs with ≥10 people in the past 30 days for women and ≥20 people in the past 
30 days for men; thresholds determined using the top quartile of network size based on gender-stratified analyses of preliminary data from an online survey
b Range given for sites that changed coupon policies while the study was ongoing
c For completing study activities (baseline survey and biological testing)

Study

Overall IL KY NC NE OH OR WI

Personal network 
size used as a 
seed selection 
criterion

1/7 No Yesa No No No No No

Total number of 
seeds

562 53 48 50 51 45 42 273

  Non-generative 
seeds

251 (45%) 38 (72%) 24 (50%) 13 (26%) 13 (25%) 23 (51%) 18 (43%) 122 (45%)

  Seeds with ≥5 
waves

46 (8%) 1 (2%) 4 (8%) 6 (12%) 11 (22%) 3 (7%) 4 (10%) 17 (6%)

  Wave size range, 
median (range)

1 (0-14) 0 (0-5) 0.5 (0-13) 1 (0-11) 1 (0-14) 0 (0-13) 1 (0-7) 1 (0-11)

Coupons per 
recruiterb

3-7 6 3 3-4 3-7 4-5 3-4 3-5

Incentive for 
participationc

$20-40 $40 for com-
pleting 
the survey

$45 for complet-
ing the survey 
and rapid testing

$40 for com-
pleting 
the survey

$20 for complet-
ing the survey 
and rapid testing

$25 for complet-
ing the survey

$25 for complet-
ing the survey

$20 for complet-
ing the survey 
and rapid testing

Incentive for 
recruitment

$10-20 $20 per eli-
gible referral

$10 per eligible 
referral who 
enrolled

$20 
per eligible 
referral who 
enrolled

$10 per eligible 
referral who 
completed all 
study activities

$10 per eligible 
referral

$10 per eligible 
referral

$10 per eligible 
referral who 
enrolled

Duplicate partici‑
pants identified

20 2 3 0 0 3 1 14

  Downstream 
recruits of dupli-
cates

31 7 0 0 0 6 0 18
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Table 2  Characteristics of participants and substance use patterns in the Rural Opioid Initiative by study

Data presented as n (%) unless otherwise indicated

Abbreviations: IL Illinois, KY Kentucky, NC North Carolina, NE New England (Massachusetts, New Hampshire, Vermont), OH Ohio, OR Oregon, WI Wisconsin
a Race/ethnicity are mutually exclusive categories. Hispanic includes everyone who is Hispanic. White and Black race include those who are White or Black and not 
Hispanic
b Reference period: past 6 months
c Heroin, street fentanyl/carfentanil, prescription opioids, novel synthetics (i.e., U47700), buprenorphine, and/or methadone
d Use of ≥2 drug categories by any route in past 30 days (opioids, methamphetamine, cocaine/crack, prescription anxiety drugs, gabapentin, clonidine, and/or other)
e Injection drug use in past 30 days was an eligibility requirement for enrollment in WI
f Among participants who received a rapid HCV test (n=2,609 overall; IL: n=147; KY: n=337; NC: n=211; NE: n=547; OH: n=235; OR: n=159; WI: n=973)
^ Subcategory of Opioids; percentages among all participants. Not all subcategories are shown

Study

Overall IL KY NC NE OH OR WI

N 2,842 166 338 350 589 252 174 973

Age, median (IQR) 34 (28-42) 40 (31-47) 35 (29-41) 32 (27-42) 34 (28-42) 38 (32-47) 36 (29-45) 33 (27-40)

Female 1,212 (43%) 70 (42%) 144 (43%) 168 (48%) 243 (41%) 127 (50%) 75 (43%) 385 (40%)

Race/Ethnicity
  White 2,346 (83%) 141 (85%) 330 (98%) 237 (68%) 523 (89%) 222 (88%) 135 (78%) 758 (78%)

  Black or African American 80 (3%) 17 (10%) 2 (<1%) 5 (1%) 6 (1%) 13 (5%) 3 (2%) 34 (3%)

  Native American 206 (7%) 3 (2%) 1 (<1%) 77 (22%) 9 (2%) 5 (2%) 9 (5%) 102 (10%)

  Other/Unknown 96 (3%) 3 (2%) 4 (1%) 12 (3%) 23 (4%) 7 (3%) 11 (6%) 36 (4%)

  Hispanica 114 (4%) 2 (1%) 1 (<1%) 19 (5%) 28 (5%) 5 (2%) 16 (9%) 43 (4%)

Experienced homelessnessb 1,519 (53%) 80 (48%) 123 (36%) 151 (43%) 332 (56%) 127 (50%) 119 (68%) 587 (60%)

Preferred drug for getting high
  Opioidsc 1,533 (54%) 80 (48%) 206 (61%) 171 (49%) 452 (77%) 179 (71%) 78 (45%) 367 (38%)

    Heroin^ 1,079 (38%) 33 (20%) 103 (30%) 106 (30%) 351 (60%) 120 (48%) 69 (40%) 297 (31%)

    Street fentanyl/carfentanil^ 62 (2%) 2 (1%) 1 (<1%) 11 (3%) 23 (4%) 21 (8%) 0 4 (<1%)

    Prescription opioids^ 255 (9%) 31 (19%) 63 (19%) 44 (13%) 44 (7%) 29 (12%) 8 (5%) 36 (4%)

    Buprenorphine^ 79 (3%) 5 (3%) 36 (11%) 4 (1%) 25 (4%) 8 (3%) 1 (1%) 0

    Methadone^ 40 (1%) 9 (5%) 3 (1%) 6 (2%) 7 (1%) 1 (<1%) 0 14 (1%)

  Methamphetamine 1,016 (36%) 68 (41%) 108 (32%) 158 (45%) 23 (4%) 59 (23%) 91 (52%) 509 (52%)

  Cocaine/crack 163 (6%) 12 (7%) 7 (2%) 14 (4%) 95 (16%) 8 (3%) 1 (1%) 26 (3%)

  Benzodiazepines 39 (1%) 4 (2%) 6 (2%) 5 (1%) 4 (1%) 1 (<1%) 1 (1%) 18 (2%)

  Other 76 (3%) 2 (1%) 11 (3%) 2 (1%) 15 (3%) 5 (2%) 3 (2%) 38 (4%)

Drugs used in past 30 days
  Opioidsc 2,437 (86%) 139 (84%) 299 (88%) 298 (85%) 587 (99%) 235 (93%) 133 (76%) 746 (77%)

    Heroin^ 1,963 (69%) 78 (47%) 230 (68%) 230 (66%) 531 (90%) 187 (78%) 105 (60%) 592 (61%)

    Street fentanyl/carfentanil^ 1,020 (36%) 42 (25%) 95 (28%) 160 (46%) 370 (63%) 150 (60%) 19 (11%) 184 (19%)

    Prescription opioids^ 1,615 (57%) 113 (68%) 211 (62%) 224 (64%) 339 (58%) 129 (51%) 67 (39%) 532 (55%)

    Buprenorphine^ 1,124 (40%) 79 (48%) 197 (58%) 142 (41%) 304 (52%) 113 (45%) 18 (10%) 271 (28%)

    Methadone^ 621 (22%) 29 (17%) 51 (15%) 60 (17%) 171 (29%) 34 (13%) 27 (16%) 249 (26%)

  Methamphetamine 2,148 (76%) 132 (80%) 265 (78%) 325 (93%) 203 (34%) 199 (79%) 168 (97%) 856 (88%)

  Cocaine/crack 1,224 (43%) 76 (46%) 74 (22%) 82 (23%) 451 (77%) 103 (41%) 14 (8%) 424 (44%)

  Benzodiazepines 1,325 (47%) 102 (61%) 147 (43%) 177 (51%) 300 (51%) 122 (48%) 47 (27%) 430 (44%)

  Other 985 (35%) 49 (30%) 165 (49%) 77 (22%) 270 (46%) 123 (49%) 26 (15%) 275 (28%)

  Multiple classes of drugs usedd 2,404 (85%) 142 (86%) 294 (87%) 299 (85%) 517 (88%) 224 (89%) 137 (79%) 791 (81%)

Ever injected drugse 2,610 (92%) 137 (83%) 290 (86%) 330 (94%) 499 (85%) 220 (87%) 161 (93%) 973 (100%)

Injection drug use in past 30 dayse 2,420 (85%) 121 (73%) 245 (72%) 299 (85%) 431 (73%) 200 (79%) 153 (88%) 971 (>99%)

HCV positive antibody statusf 1,353 (52%) 66 (45%) 208 (62%) 144 (68%) 325 (59%) 170 (72%) 86 (54%) 354 (36%)
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use heroin), the prevalence of heroin use in the resulting 
sample will overestimate the true population prevalence. 
Even when RDS weights are applied, it is possible for the 
RDS-I and RDS-II estimators to be biased by seed selec-
tion [14, 30], recruitment differences [15, 29, 31, 32], and 
bottlenecks [33].

Additionally, the large design effects observed sug-
gest that the effective sample sizes are smaller and 
that estimates should account for the observed lack of 
independence resulting from peer recruitment. Other 
studies have similarly reported design effects rang-
ing from 1.20 to 5.90 on key variables [23, 34, 35]. Of 
note, neither RDS estimator is designed to account 
for this lack of independence and failure to do so will 
result in artificially narrow confidence intervals [36]. 
The estimates presented here account for this lack of 
independence through the use of robust confidence 
intervals, although tree-based bootstraps were also 
considered.

Although several RDS estimators are available, none 
of the specific estimators are preferred in all instances. 
For example, the RDS-I estimator outperforms the 
RDS-II estimator when: [1] The seeds selected do 
not represent the underlying population; or [2] The 
sampling fraction is large and there is no differential 
recruitment. The RDS-II estimator can produce biased 
estimates in the presence of high homophily [29], dif-
ferential recruitment [29], and large sampling fractions 

(>10%) [29, 31]. Because RDS-II weights are degree-
based, estimates are sensitive to degree accuracy and 
differential degree [13, 37]. For example, if the mean 
degree is higher for individuals with attribute X and the 
sampling fraction is large, the prevalence of attribute X 
will likely be an underestimate due to the reliance on 
degree as a weight [32]. The RDS-II estimator can also 
lead to biased estimates in the presence of differential 
coupon rejection by peers and non-random recruitment 
of peers (based on characteristics of peer recruits); this 
bias is greatest when recruiters are more likely to avoid 
recruiting peers that they do not think would agree to 
participate (i.e., more likely to reject coupons) [13, 31]. 
Lu and colleagues also report a potential for biased 
estimates and larger standard errors, mean absolute 
errors, and design effects when participants preferen-
tially recruit those they know better [31]. That said, we 
see compelling evidence that degree, as measured by 
the coefficient of discoverability, is a key factor in how 
quickly participants are recruited (Table 3).

Accurate estimates of the burden of opioid use, opi-
oid and stimulant co-use, and polysubstance use in rural 
populations are needed to inform harm reduction and 
evidence-based treatment strategies to reduce opioid-
related harms and increase evidence-based methods for 
substance use treatment. In these analyses, we present 
unweighted prevalence estimates, two different RDS-
I-adjusted estimates, and RDS-II-adjusted estimates 

Table 3  Recruitment homophily, design effects and coefficient of discoverability for key variables by study

Abbreviations: IL Illinois, KY Kentucky, NC North Carolina, NE New England (Massachusetts, New Hampshire, Vermont), OH Ohio, OR Oregon, WI Wisconsin
a Age categories: <25, 25-34, 35-44, 45-54, and ≥55
b Reference period: past 30 days
c Reference period: past 6 months

Study

IL KY NC NE OH OR WI

Homophily
  Age (continuous/categorical)a 0.84/1.28 1.68/1.25 1.43/1.36 1.16/1.29 2.15/1.10 1.68/1.26 2.05/1.48

  Heroin useb 1.44 1.10 1.27 1.02 1.21 1.28 1.23

  Fentanyl useb 1.03 1.11 1.25 1.07 1.26 1.01 1.04

  Methamphetamine useb 1.21 1.14 1.01 1.02 1.04 1.02 1.04

  Preferred drug for getting high 1.55 1.35 1.51 1.13 1.25 1.38 1.42

  HCV antibody status 1.16 1.18 1.01 1.11 1.08 1.01 1.11

  Homelessnessc 1.03 1.04 1.05 1.18 1.09 1.08 1.12

Design Effects
  Heroin useb 5.23 2.48 3.80 3.58 3.64 3.40 2.91

  Fentanyl useb 4.97 2.06 3.59 2.79 2.68 1.52 2.08

  Methamphetamine useb 2.06 1.92 3.04 2.80 2.93 1.97 2.05

  HCV positive antibody status 5.42 2.46 3.22 2.58 2.99 3.21 2.67

  Homelessnessc 4.26 2.57 4.13 2.50 2.86 2.91 2.60

Coefficient of discoverability 1.12 0.90 1.29 1.28 1.05 1.02 1.27



Page 10 of 14Rudolph et al. BMC Medical Research Methodology           (2024) 24:94 

for five key variables in each of seven separately col-
lected datasets. Although the RDS-adjusted estimates 
will not remove all potential sampling biases, the fact 
that estimates did not vary drastically across estima-
tion approaches suggests that inferences (i.e., recom-
mended interventions) would be similar regardless of 

the analytical approach used. Also, the above-described 
biases are less likely to impact measures of association 
than prevalence estimates and treatment of the data as a 
convenience sample is sensible.

Despite some of the limitations of the RDS sam-
pling strategy noted above, these results shine a unique 

Table 4  Comparison of unweighted and RDS-weighted prevalence estimates for key variables by study

Data presented as: estimate (95% CI)

Abbreviations: IL Illinois, KY Kentucky, NC North Carolina, NE New England (Massachusetts, New Hampshire, Vermont), OH Ohio, OR Oregon, WI Wisconsin

Prevalence estimates calculated using linear regression with robust confidence intervals
a Reference period: past 30 days
b Reference period: past 6 months

Study

IL KY

Unweighted 
Sample

RDS-I (Age) RDS-I (Drug of 
Choice)

RDS-II Unweighted 
Sample

RDS-I (Age) RDS-I (Drug of 
Choice)

RDS-II

Heroin usea 0.47 (0.40, 0.55) 0.46 (0.38, 0.54) 0.46 (0.38, 0.54) 0.43 (0.31, 0.56) 0.68 (0.63, 0.73) 0.67 (0.62, 0.72) 0.63 (0.57, 0.68) 0.57 (0.45, 0.68)

Fentanyl usea 0.26 (0.19, 0.33) 0.26 (0.19, 0.33) 0.26 (0.19, 0.32) 0.26 (0.15, 0.37) 0.31 (0.25, 0.36) 0.30 (0.25, 0.35) 0.26 (0.21, 0.31) 0.15 (0.07, 0.22)

Methampheta‑
mine usea

0.80 (0.73, 0.86) 0.78 (0.71, 0.84) 0.79 (0.73, 0.86) 0.78 (0.69, 0.87) 0.79 (0.74, 0.83) 0.78 (0.74, 0.83) 0.75 (0.70, 0.80) 0.62 (0.50, 0.74)

HCV antibody 
status

0.45 (0.37, 0.53) 0.47 (0.38, 0.55) 0.44 (0.36, 0.52) 0.50 (0.37, 0.63) 0.62 (0.57, 0.67) 0.60 (0.55, 0.66) 0.59 (0.54, 0.65) 0.58 (0.47, 0.69)

Homelessnessb 0.49 (0.41, 0.57) 0.47 (0.40, 0.55) 0.49 (0.41, 0.56) 0.58 (0.46, 0.69) 0.36 (0.31, 0.42) 0.37 (0.32, 0.42) 0.35 (0.30, 0.40) 0.36 (0.25, 0.47)

NC NE

Unweighted 
Sample

RDS-I (Age) RDS-I (Drug of 
Choice)

RDS-II Unweighted 
Sample

RDS-I (Age) RDS-I (Drug of 
Choice)

RDS-II

Heroin usea 0.66 (0.61, 0.71) 0.64 (0.59, 0.70) 0.62 (0.57, 0.67) 0.48 (0.38, 0.57) 0.90 (0.88, 0.93) 0.90 (0.88, 0.93) 0.90 (0.88, 0.93) 0.89 (0.85, 0.92)

Fentanyl usea 0.49 (0.44, 0.55) 0.48 (0.42, 0.53) 0.45 (0.39, 0.51) 0.36 (0.26, 0.46) 0.68 (0.64, 0.71) 0.67 (0.63, 0.71) 0.67 (0.63, 0.71) 0.64 (0.60, 0.69)

Methampheta‑
mine usea

0.93 (0.90, 0.96) 0.93 (0.90, 0.95) 0.92 (0.88, 0.95) 0.91 (0.85, 0.97) 0.36 (0.32, 0.40) 0.36 (0.32, 0.40) 0.36 (0.32, 0.40) 0.34 (0.29, 0.38)

HCV antibody 
status

0.65 (0.59, 0.72) 0.66 (0.59, 0.73) 0.63 (0.56, 0.70) 0.71 (0.62, 0.81) 0.59 (0.55, 0.64) 0.59 (0.55, 0.64) 0.59 (0.55, 0.63) 0.57 (0.52, 0.62)

Homelessnessb 0.43 (0.38, 0.49) 0.43 (0.37, 0.48) 0.43 (0.37, 0.48) 0.35 (0.26, 0.44) 0.57 (0.53, 0.61) 0.56 (0.52, 0.60) 0.57 (0.53, 0.61) 0.52 (0.47, 0.56)

OH OR

Unweighted 
Sample

RDS-I (Age) RDS-I (Drug of 
Choice)

RDS-II Unweighted 
Sample

RDS-I (Age) RDS-I (Drug of 
Choice)

RDS-II

Heroin usea 0.79 (0.73, 0.83) 0.78 (0.73, 0.83) 0.78 (0.73, 0.84) 0.77 (0.72, 0.83) 0.71 (0.60, 0.81) 0.60 (0.53, 0.68) 0.58 (0.51, 0.66) 0.55 (0.47, 0.63)

Fentanyl usea 0.63 (0.56, 0.69) 0.59 (0.52, 0.66) 0.62 (0.56, 0.68) 0.46 (0.35, 0.58) 0.12 (0.07, 0.17) 0.13 (0.07, 0.18) 0.10 (0.06, 0.15) 0.06 (0.02, 0.10)

Methampheta‑
mine usea

0.80 (0.75, 0.85) 0.79 (0.73, 0.84) 0.79 (0.74, 0.84) 0.61 (0.48, 0.74) 0.97 (0.95, 1.00) 0.97 (0.94, 1.00) 0.97 (0.94, 1.00) 0.98 (0.96, 1.00)

HCV antibody 
status

0.71 (0.66, 0.77) 0.68 (0.61, 0.75) 0.71 (0.65, 0.77) 0.55 (0.42, 0.67) 0.53 (0.45, 0.61) 0.53 (0.45, 0.61) 0.51 (0.43, 0.59) 0.50 (0.34, 0.67)

Homelessnessb 0.51 (0.45, 0.57) 0.50 (0.43, 0.56) 0.51 (0.44, 0.57) 0.43 (0.33, 0.54) 0.68 (0.61, 0.75) 0.67 (0.60, 0.75) 0.66 (0.58, 0.74) 0.55 (0.39, 0.71)

WI

Unweighted 
Sample

RDS-I (Age) RDS-I (Drug of 
Choice)

RDS-II

Heroin usea 0.64 (0.61, 0.68) 0.63 (0.60, 0.67) 0.63 (0.60, 0.66) 0.60 (0.56, 0.65)

Fentanyl usea 0.19 (0.17, 0.22) 0.19 (0.16, 0.21) 0.18 (0.16, 0.21) 0.16 (0.13, 0.19)

Methampheta‑
mine usea

0.91 (0.89, 0.93) 0.91 (0.89, 0.93) 0.91 (0.89, 0.93) 0.89 (0.87, 0.92)

HCV antibody 
status

0.36 (0.33, 0.39) 0.36 (0.33, 0.39) 0.35 (0.32, 0.38) 0.34 (0.30, 0.38)

Homelessnessb 0.63 (0.60, 0.66) 0.63 (0.60, 0.66) 0.63 (0.60, 0.66) 0.59 (0.55, 0.64)
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window into a difficult-to-reach population of high pub-
lic health importance. Similar to our approach, future 
studies should consider presenting unweighted and RDS-
adjusted estimates together, along with RDS diagnostics, 
so that a fuller understanding can be achieved. Future 
studies in rural areas may also benefit from conduct-
ing additional formative research prior to initiating RDS 
recruitment to better determine whether the underlying 
population is networked. If distinct subgroups exist, RDS 
may not be the most appropriate recruitment strategy.

Conclusion
Conducting research in hard-to-reach, marginalized 
populations requires carefully applied recruitment 
techniques that can be challenging to implement. RDS 
was used to successfully recruit PWUD from seven 
rural U.S. regions. Despite its limitations, RDS has 
recruitment advantages over other approaches, which 
are primarily location-based or rely on outreach work-
ers. We have described how RDS-adjusted prevalence 
estimators perform in a series of rural studies on the 
use of non-prescribed opioids and how failure to meet 
key RDS assumptions impacts their performance. 
Understanding which, if any, RDS assumptions are not 
met is critical and provides important insights neces-
sary to interpret how the resulting estimates may be 
biased. However, at the same time, the range of vari-
ation across these different studies is reassuringly 
limited. This includes variability in the direction and 
strength of each association under different weighting 

schemes. That said, there may still be an advantage 
to presenting a range of estimators for prevalence 
estimates, to show sensitivity to different weighting 
assumptions and to use care in the interpretation of 
such estimates.
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Table 5  Unweighted and RDS-weighted Relative Risk and Odds Ratio measures of association for the relationship between (a) 
fentanyl use, (b) heroin use, and (c) age and positive Hepatitis C Virus antibody status

Abbreviations: CI Confidence interval, HCV Hepatitis C virus, OR Odds ratio, RR Relative risk
1 Relative risks estimated separately in each study using modified Poisson regression and combined across studies using random-effects meta-analyses
2 Odds ratios estimated separately in each study using logistic regression and combined across studies using random-effects meta-analyses
a Reference period: past 30 days
b Age modeled as a continuous variable

(a) Fentanyl usea and
HCV antibody status

(b) Heroin usea and
HCV antibody status

(c) Age (per 10 years)b 
and
HCV antibody status

Relative Risk Regression1 RR 95% CI RR 95% CI RR 95% CI

Unweighted 1.35 1.18, 1.54 1.44 1.28, 1.62 1.02 0.96, 1.09

RDS-I: Homophily by age 1.36 1.19, 1.55 1.44 1.30, 1.60 1.03 0.98, 1.08

RDS-I: Homophily by drug of choice 1.35 1.17, 1.56 1.44 1.28, 1.62 1.02 0.96, 1.09

RDS-II: Individual network size/degree 1.34 1.06, 1.70 1.31 1.06, 1.61 1.06 0.97, 1.15

Logistic Regression2 OR 95% CI OR 95% CI OR 95% CI
Unweighted 2.07 1.56, 2.74 2.13 1.77, 2.57 1.05 0.91, 1.20

RDS-I: Homophily by age 2.07 1.57, 2.72 2.12 1.75, 2.57 1.08 0.98, 1.20

RDS-I: Homophily by drug of choice 2.02 1.48, 2.76 2.10 1.74, 2.54 1.04 0.89, 1.21

RDS-II: Individual network size/degree 1.93 1.23, 3.02 1.87 1.37, 2.55 1.12 0.94, 1.33
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