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Abstract
Background Intensive longitudinal data (ILD) collected in near real time by mobile health devices provide a new 
opportunity for monitoring chronic diseases, early disease risk prediction, and disease prevention in health research. 
Functional data analysis, specifically functional principal component analysis, has great potential to abstract trends in 
ILD but has not been used extensively in mobile health research.

Objective To introduce functional principal component analysis (fPCA) and demonstrate its potential applicability 
in estimating trends in ILD collected by mobile heath devices, assessing longitudinal association between ILD and 
health outcomes, and predicting health outcomes.

Methods fPCA and scalar-to-function regression models were reviewed. A case study was used to illustrate the 
process of abstracting trends in intensively self-measured blood glucose using functional principal component 
analysis and then predicting future HbA1c values in patients with type 2 diabetes using a scalar-to-function 
regression model.

Results Based on the scalar-to-function regression model results, there was a slightly increasing trend between daily 
blood glucose measures and HbA1c. 61% of variation in HbA1c could be predicted by the three preceding months’ 
blood glucose values measured before breakfast (P < 0.0001, R2

adjusted = 0.61).

Conclusions Functional data analysis, specifically fPCA, offers a unique tool to capture patterns in ILD collected 
by mobile health devices. It is particularly useful in assessing longitudinal dynamic association between repeated 
measures and outcomes, and can be easily integrated in prediction models to improve prediction precision.
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Introduction
Owing to the ubiquity of smartphones and Bluetooth 
devices in the consumer market, coupled with fast-
developing mobile health technologies, health data have 
become easily captured, stored, and accessed [1]. This 
new mode of device data, usually referred to as intensive 
longitudinal data (ILD) [2], can be measured tens, hun-
dreds, and even thousands of times within a specific time 
interval, such as hour, day, or month. Compared to tradi-
tional clinical measurements at small numbers of discrete 
clinic visits and panel surveys, mobile health device gen-
erated ILD can capture trends in data at a more granular 
level. This abundance of data availability in near-real time 
provides tremendous opportunity for disease monitor-
ing, early risk prediction and prevention in healthcare 
[3]. Specifically, as self-monitoring between clinic visits 
is essential for managing chronic disease such as type 
2 diabetes and hypertension [1, 4], many patients use 
mobile health devices to collect and self-monitor various 
health indicators and health behaviors on a daily basis 
over a long time period. There is an emerging need to use 
these intensively collected data to support patients with 
chronic illnesses in managing their conditions between 
clinic visits.

While a variety of mobile health technologies may 
facilitate data collection, there are considerable chal-
lenges in managing and analyzing the ILD they generate. 
Specifically, due to singularity issue when the number 
of repeated measurements is more than the number of 
participants, standard regression models may not allow 
coefficients to be estimated uniquely [4]. A simple and 
traditional way to handle ILD is the response feature 
approach, in which data are summarized either by a sin-
gle summary statistic (i.e., mean or median) or several 
repeated summary statistics over certain time windows, 
such as averaging measurements by week or month [2]. 
Then the data can be analyzed using linear model or lin-
ear mixed models. However, this approach would result 
in the loss of information, and there is no clear evidence 
to support what time interval is meaningful to use for 
summary statistics. Therefore, a better way to analyze 
intensive longitudinal data while retaining most of its 
value is needed.

A prominent feature of ILD is that they are often in a 
continuous-time nature that can be inherently repre-
sented by an underlying curve, a stochastic process, or 
a function over time. For instance, although a patient 
with diabetes typically measures their blood glucose level 
several times a week, the values can exist at any time 
within the period and can be considered as functional 
data. Functional data analysis (FDA) is a class of statis-
tical approaches specially designed to represent the data 
structure (underlying smooth curve) in ILD that sum-
marizes the trend using a small number of variables [5]. 

Specifically, functional principal component analysis 
(fPCA), an emerging first-line approach in FDA, has been 
used to recover individual complex trajectories [6–12], 
and to cluster patients based on their distinct trajec-
tory patterns [13–15]. Functional regression modelling, 
which uses functional data as covariates through fPCA, 
was developed to explore the longitudinal association 
between ILD and a scalar outcome [16]. While offering a 
promising statistical tool to extract trend information in 
ILD for assessing longitudinal association and conduct-
ing risk prediction [17], the application of this method 
in mobile health research is scarce due to the complexity 
and relative unfamiliarity of FDA.

This paper serves as a timely and practical guide to 
illustrate the use of the functional regression model in 
assessing longitudinal relationship between ILD and 
health outcome, making risk predictions and recovering 
individual trajectories. We provide a brief introduction to 
the functional regression model and available statistical 
software for conducting this analysis. We then provide an 
illustrative example to demonstrate the functional regres-
sion analysis process step by step using data collected 
from a mobile health study with type II diabetes patients.

Functional Data Analysis (FDA) and functional regression 
model
The concept of functional data and the use of functional 
data analysis for ILD were introduced by Ramsay & Sil-
verman [18, 19]. Although ILD is discretely measured, 
they can be considered as functional data because the 
true values are continuous over a time interval and are 
regulated by an underlying smooth curve or a function. 
The basic idea for FDA is to extract trend information 
from the ILD and construct functional curves for each 
subject using a linear combination of small numbers of 
functions through a variety of statistical methods and 
techniques, including basis expansion and roughness 
penalty. Various dimension reduction methods can then 
be applied to the functional object with fPCA being one 
of the most used due to its flexibility. fPCA is an exten-
sion of standard principal component analysis [20] in 
the functional space. While PCA handles multivariate 
data as discrete observations, which suits cross-sectional 
data, fPCA models data as a stochastic process which 
is smooth trajectories other than discrete data points, 
which is better for longitudinal data [21]. Indeed, this 
approach is particularly well-suited to our ILD data, 
as it enables us to model the latent trajectory of blood 
glucose levels across a specific time frame. Such model-
ing offers valuable insights into the dynamic relation-
ship between these levels and health outcomes as time 
progresses. Conceptually speaking, fPCA captures the 
variations in functional/longitudinal data by using a few 
functions over time weighted by uncorrelated variables. 
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After the dimension reduction of ILD to a linear com-
bination of a few functional principal components, they 
could be used as outcome (functional response model) or 
predictor (scalar-on-function regression model) or both 
(function-on-function regression model). An excellent 
review of all types of functional regression model using 
fPCA is provided in the books for functional data analysis 
[16, 22–24]. In this section, we will focus on using scalar-
on-function functional regression model [25] to study 
the association between ILD and a scalar outcome. The 
model is formulated as

 
Yi = α +

∫
Xi (t) β (t) dt + εi, (1)

where α   is the intercept, β (t) is the coefficient function 
of time t, which indicates level of importance of each mea-
surement over time with respect to scalar outcome Y , 
and εi  is the random error that follows the distribution of 
N(0, σ2), i = 1, . . . , n . The biggest difference compared to 
regular linear regression is that both the regressor Xi (t) 
and coefficient function β (t) are functions of time t. There 
are different ways to obtain unique estimation for β (t) 
and fPCA-based method is the most commonly used one. 
The estimation process is conducted in two stages.

In the first stage, we need to represent intensively 
measured longitudinal data by smooth random func-
tions Xi (t). The fPCA approach models the data as 
smooth covariance functions with respect to different 
time points. The dimension of ILD is usually large given 
the large number of time points, and the correlations 
between these repeated measurements are high. fPCA 
uses Karhunen–Loève expansion to abstract orthogonal 
functions which represent the most prominent trends in 
variation of data. For the ith person, assume that the ILD 
have been centered [16, 26–29], then the underlying tra-
jectory Xi (t) can be approximated by

 
Xi (t) ≈

p∑

j=1

ζ̂ijυ̂j (t) ,  (2)

where υ̂j (t)  is the jth estimated eigenfunction or esti-
mated functional principal component (EFPC) of the 
covariance function of X (t) among top p  important 
EFPCs, and ζ̂ij  is the corresponding jth estimated ran-
dom score of ith person, which is assumed to follow an 
independent and identically distributed (i.i.d.) normal 
distribution. The first component υ1 (t) represents the 
most significant trend deviated from the mean function 
since it explains the largest portion of variance. The score 
ζij  associated with each component describes how much 
υj (t)  contributes to the ith person’s subject-specific devi-
ation from population mean function. Throughout the 

paper, the hat over a parameter indicates the parameter 
or function estimate.

After representing Xi (t) as a few principal com-
ponents, in the second stage, we can proceed to the 
regression model part. It is assumed that the coefficient 
function β (t) in Eq.  (1) can be expanded by eigenfunc-
tions such that

 
β (t) =

p∑

j=1

βjυj (t)  (3)

.Replacing Xi (t) by a set of smooth curves according to 
(2), the regression model in Eq. (1) becomes a regular lin-
ear regression model shown as below

 
Yi = α +

∫
β (t)




p∑

j=1

ζ̂ijυ̂j (t)



 dt + εi,

 
= α +

p∑

j=1

ζ̂ijβj + εi,  (4)

where ζ̂ij  is the functional score that was estimated 
from (2) and can be treated as the pseudo-covari-
ates after dimension reduction. α  is the intercept and 
βj =

∫
β (t) υ̂j (t) dt  is the estimated coefficient for the 

jth component. Similar to a regular linear regression, we 
can obtain estimated intercept α̂  and coefficient for each 
component β̂j by least square estimates. We then use the 
estimated coefficients β̂j  in Eq. (3) to compute the origi-
nal coefficient function β̂ (t) as follows:

 
β̂ (t) =

p∑

j=1

β̂jυ̂j (t)  (5)

.More detailed modeling and estimation steps can be 
found in the supplemental materials.

Commonly used estimation methods for fPCA include 
smoothing or imputation approaches [5]. Missing data 
can be handled by either removing records that contain-
ing missing values or apply missing data imputation. 
When there is a large amount of missing data, or when 
the repeated measures are noisy or at irregular time 
points, fPCA for sparse functional data can be used. This 
method can borrow information across samples and pro-
duce a more stable and accurate estimation [30, 31].

Several statistical software is readily available for FDA. 
The R and MATLAB package “fda” [26] were as first 
developed to implement basic tools of FDA, and the 
“refund” R package [32] was built to provide more flexible 
and advanced functional models like various functional 
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regression models. In addition, the “face” package [33] 
was specially designed to conduct fPCA for sparse func-
tional data or longitudinal data. Recently, the R package 
“mfaces” [34] was developed to advance multivariate 
fPCA for multiple sparse functional data. In our illus-
trative example, we will implement the fPCA using the 
“face” package in R.

An empirical example: functional PCA regression model 
using intensive mobile health data
As an illustrative example, we built a scalar-on-func-
tion regression model using data from an observational 
study that was designed to explore the feasibility of using 
multiple mobile health devices to facilitate patients’ 
self-management for their type 2 diabetes mellitus [35]. 
While blood glucose is an important measure for day-
to-day management, HbA1c reflects the average blood 
glucose levels over the past 2–3 months, offering a more 
stable and comprehensive view of blood sugar control. 
Furthermore, HbA1c is the only measure of glycemia 
that has been studied as a means to predict long-term 
microvascular and macrovascular diabetes complica-
tions. Thus, HbA1c remains the single most impor-
tant glycemic measure for providers and patients alike. 
Although Hemoglobin A1c (HbA1c) is the main health 
indicator for type 2 diabetes mellitus patients, patients 
usually need to visit clinics and have HbA1c checked in a 
lab every 3–6 months [36]. Between clinic visits, patients 
were asked to monitor their blood glucose using a glu-
cometer at least on a weekly basis. While there is a sug-
gested controlled range for blood glucose, blood glucose 
does fluctuate widely based on time of measurement, 
diet, and other factors [37]. Although a calculator is avail-
able to convert average blood sugar to HbA1c, patients 
may find it challenging to calculate their average blood 
sugar accurately. According to a recently conducted qual-
itative research study, patients expressed prefererence 
for receiving projections of their HbA1c every time they 
input the self-measured blood glucose measures from a 
glucometer [38]. Ideally, it would be more convenient to 
develop a prediction model that could be incorporated 
in the mobile device to predict HbA1c based on all the 
input glucometer readings for patients. Additionally, we 
know that HbA1c reflects red blood cell turnover, which 
typically occurs every 3–4 months. However, there are no 
studies that explore the actual longitudinal relationship 
between blood glucose and HbA1c. Our hypothesis is 
that HbA1c should disproportionately reflect blood glu-
cose measures from more recent days. In this example, 
we will demonstrate how to build a scalar-on-function 
regression model to explore the longitudinal relationship 
between intensively measured blood glucose over three 
months and the health outcome HbA1c, predict HbA1c, 
and showcase the ability of fPCA to recover a smooth 

curve underlying the intensively measured glucose data 
over three months for each individual.

Design The parent study was a single-arm longitudinal 
observational study. Each patient was provided with a 
cellular-enabled scale and a smartphone-tethered wrist-
worn activity tracker and glucometer. Daily self-measure-
ments of weight, physical activity, and blood glucose data 
were collected over 6 months [35, 39]. Data were aggre-
gated on a research platform.

Study participants Sixty adult patients with were 
recruited from the Duke Family Medicine Center. Partici-
pants who were eligible were at least 18 years old, able to 
speak and read English, diagnosed with type 2 diabetes 
mellitus, prescribed to monitor their blood sugar at least 
weekly, on diabetes-related medication, and owned an 
Android or iOS smartphone.

Measures
HbA1c HbA1c values closest to 3, 6 and 9-month follow-
up dates were extracted from the electronic health record 
(EHR). In this study, we used the HbA1c value closest to 
the 6-month follow-up date as the outcome.
Blood glucose: Blood glucose was measured by glucom-
eter for 6 months. Although the inclusion criterion only 
required measurement of blood glucose at least once a 
week, most patients measured their blood glucose more 
frequently, either daily or multiple times a day. As blood 
glucose varies depending on patient diet, there were 9 
available labels when recording glucose data: before-
breakfast, after-breakfast, before-lunch, after-lunch, 
before-dinner, after-dinner, after-snack, at midnight, 
and fasting. As fasting glucose values are more stable, 
the before-breakfast glucose value was most frequently 
measured among all meal labels. In this study, we only 
included the before-breakfast glucose measures.

Statistical analysis
To understand the data structure, an R Shiny app was 
developed so each patients’ data visualization was eas-
ily produced. To build a HbA1c prediction model, we 
used all the samples that had HbA1c values at a 6-month 
follow-up time (outcome) and if they had any pre-
breakfast measurements of blood glucose data in the 
previous 3 months. Duplicated measurements on the 
same day were removed. Sixteen of 60 participants were 
excluded because they either lacked before-breakfast 
glucose measurements within the past 3 months or had 
missing 6-month HbA1c values. The median number of 
before-breakfast measurements per person in the analyti-
cal dataset was 46 out of 91 daily measures (3 months). 
As 54% of before-breakfast values were missing, fPCA 
for sparse functional data was used to estimate the 
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intensively longitudinal blood glucose data for each indi-
vidual. The input data were centered by subtracting aver-
ages over all subjects. The smallest number of functional 
principal components were chosen such that over 95% 
cumulative variance of original data can be explained 
by the model. Scalar-on-function regression model was 
built to model the association between 6-month HbA1c 
and the longitudinal blood glucose data in the preced-
ing 3 months. Adjusted R2  was calculated to assess the 
goodness of fit for the model. In addition, mean squared 
error (MSE) and Spearman’s correlation coefficient from 
a leave-one-subject-out cross validation were obtained 
as evaluation metrics for the model predicting HbA1C 
values.

Implementation
The implementation of fPCA and the subsequent regres-
sion model is straightforward by using off-the-shelf soft-
ware as we shall demonstrate in this section. The R codes 
to apply fPCA on sparse blood glucose data using “face” 
package [33] is presented below:

 
# fpca on glucose data.

fit_face <- face.sparse(data = glucose_long, argvals.
new=(-90:0), newdata = glucose_long, calculate.scores = T, 
pve = 0.95, knots = 35, center = F).

 
face.sparse is a R function to estimate covariance func-
tions for sparse functional data. The argument “data” 
represents the sparse functional data frame in long for-
mat consisting of three columns: observation times, sub-
ject indices, and values of observations without missing 
values. “argvals.new” is the vector of complete observa-
tion times, which is 91 days in our case. To save the fitted 

fPCA values, we can let “newdata” equal to the origi-
nal functional data. “calculate.scores” is used to specify 
whether scores of EFPCs need to be calculated. “pve” 
is set to 0.95 to indicate the number of EFPCs will be 
selected such that the proportion of variance explained 
is at least 0.95. We can specify the number of knots to 
better capture the curvatures of the longitudinal data by 
using “knots” for penalized splines. The option “center” 
was set to false, which means that the input functional 
data have been centered.

To fit the scalar-on-function regression on 6-month 
HbA1c using the eigen scores for the preceding 3 months 
glucose data, the following R codes are used:

 
scores <- fit_face$rand_eff$scores[,1:2])

FPCR <- lm(A1C ∼ scores).
alpha <- coefficients(FPCR) [1].
beta <- coefficients(FPCR)[2:3].
# calculate coefficient function back.
beta_t <- fit_face$eigenfunctions[,1:2] %*% beta.
 

Moreover, when the amount of missing data is small 
or after carrying out any missing data imputation, the 
“refund” R package can be used to build FPCR in one 
step:

 
FPCR2 <- pfr(A1C ∼ fpc(glucose_wide, pve = 0.95)).

plot(FPCR2) #plot coefficient function.

Results
A data visualization for one patient with all available 
HbA1c values from patients’ EHR and the trajectories 
of self-measured ILD on blood glucoses was provided in 
Fig. 1.

Fig. 1 Screenshot of the user-friendly interface of the developed R shiny app (https://meilinj.shinyapps.io/ProfilePlots/)

 

https://meilinj.shinyapps.io/ProfilePlots/
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52 out of 60 patients had a 6-month HbA1c value, and 
46 among them had at least one glucose measurement 
within the preceding 3 months. All these samples were 
used for fPCA and scalar-on-function regression model. 

For fPCA, two functional principal components (supple-
ment figure S1) were chosen as they explain more than 
99% of variance in the original glucose data (scree plot in 
Fig. 2). The observed and fitted trajectories of blood glu-
cose from fPCA of two randomly selected participants 
were plotted in Fig. 3.

To build a functional regression model for the HbA1c, 
two statistically significant functional principal compo-
nents were included in the regression model instead of 91 
highly correlated daily blood glucose values over 3 months. 
The fitted model shows a significant relationship between 
intensive longitudinal blood glucose measurement and 
resulted HbA1c (P < 0.0001, R2

adjusted = 0.61). The esti-
mated coefficient function β̂ (t), which describes how 
daily blood glucose measures over three months associ-
ated with HbA1c is shown in Fig.  4. As an evaluation of 
the prediction model, the mean squared prediction error 
(MSE) of 1.75 was obtained from a leave-one-subject-
out cross validation. Figure 5 shows the predicted HbA1c 
against actual HbA1c values for each participant from 
cross validation. The spearman correlation between pre-
dicted and actual HbA1c values is 0.61.

Discussion
Though often overlooked in medical research, fPCA 
offers an appealing tool to analyze mobile health device 
generated ILD, which are usually noisy and intermittently 
measured with missing values. It can capture subject-
specific heterogeneity with i.i.d. principal component 
scores, which can be used by subsequent analysis, such 
as regression and other inference. It’s also a tool for 

Fig. 3 Observed data points (dots) and predicted glucose values (solid) 
with 95% CI (dashed) by fPCA

 

Fig. 2 Scree plot to show the amount of total variance each functional principal component explained
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exploratory data analysis, enabling data visualization of 
population trend and individual curves [21].

Compared to the traditional approach, using a func-
tional regression model offers three main advantages. 
First, fPCA can directly utilize all data points from ILD, 
eliminating the need to choose a specific time window 

(e.g., weekly, or monthly) for averaging. Second, while a 
mixed effect model may also be able to assess longitudi-
nal effect with a small number of time points and param-
eters, functional regression model provides a unique 
opportunity to assess complex dynamic relationship 
between ILD and the outcome in a functional form. In 

Fig. 5 Predicted HbA1c and actual HbA1c values for all participants from leave-one-out cross validation. The red line is the 45-degree line to show 
equality

 

Fig. 4 Estimated coefficient function β̂ (t) and its pointwise confidence band (shaded area) over time from functional regression model
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addition, fPCA is essentially a nonparametric estimation 
approach. It is more flexible to model complex trends 
in data which may be captured by a parametric model, 
such as linear mixed model [40]. Third, since functional 
regression model uses individual data points without 
averaging, it retains the granular information from ILD. 
Therefore, the model can potentially offer a better predic-
tion especially when the actual longitudinal relationship 
between ILD and outcomes is not linear.

In the case study, functional regression model was used 
to predict HbA1c values for patients with type 2 diabe-
tes based on their preceding three months’ blood glu-
cose measurements. It also helped assess longitudinal 
association between blood glucose intensively measured 
over three months and HbA1c. In previous studies using 
response feature approach, different forms of average 
glucose values were used in analyses instead of longi-
tudinal data points: average glucose over 3 months [41, 
42], data from Korean population [43], average glucose 
from various meal labels [44], and weekly average glu-
cose values [45]. Unlike the traditional response feature 
used in previous studies mentioned above, the functional 
regression approach was able to utilize all the available 
repeated measures directly from the glucometer. It does 
not require specifying a time interval to calculate average 
values, whether weekly, monthly, or every three months. 
Comparing to coefficients of a magnitude between 0.03 
and 0.04 from previous research using response feature 
approach, the average of our estimated coefficient func-
tion over 3 months in our case study has a similar mag-
nitude (Fig. 4). In addition, we were able to estimate the 
longitudinal association between three months daily 
blood glucose and future HbA1c (Fig.  4), an aspect tra-
ditional approach in previous studies could not address. 
Our results showed an overall increasing contribution 
from daily blood glucose values over three months in 
predicting HbA1c. While this exploratory analysis is only 
based on a small sample size, this overall trend does align 
with the understanding that HbA1c reflects red blood 
cell turnover and should disproportionately reflect blood 
glucose measures at more recent days. We also observed 
that fPCA regression has a comparable R2  despite the 
fact that the sample size in the illustrative example is 
much smaller than other studies [41–45]. We also com-
pared this with a regular regression model using the 
three months average blood glucose as predictor for our 
own data set. Since the actual longitudinal relationship 
between blood glucose and HbA1c is slightly increasing 
over time (Fig.  4), the R2  for the two models are simi-
lar. However, we would anticipate that the R2  for func-
tional regression model is higher if there were other more 
prominent non-linear trends. Additionally our case study 
demonstrated that fPCA can recover the functional curve 
of blood glucose over time for each individual (Fig.  3). 

This would be not achieved if we were using traditional 
response feature approach.

Another advantage of the fPCA approach is its non-
parametric nature, making it robust to model misspecifi-
cations. Moreover, it can be easily extended to models 
that include multiple functional predictors even if they 
are not measured at the same time. We can apply mul-
tivariate fPCA on all of the repeated ILD variables, such 
as blood glucose with each different meal-labels, daily 
measured weights, and exercise levels [34]. As the multi-
variate principal component scores are derived indepen-
dently from the ILD, we can include them all together in 
the functional regression model without concerns about 
collinearity issues. This property is extremely useful for 
mobile health data as often we have multiple sources of 
mobile health data that could potentially help predict 
outcomes. Furthermore, since the functional regression 
model operates in two stages, the second stage can be 
viewed as a regular regression model with several prin-
cipal components as predictors. This allows for the utili-
zation of various other model-building techniques in the 
second stage to achieve a more comprehensive model. 
For instance, we could also incorporate other essential 
baseline factors for predicting health outcomes in addi-
tion to the ILD data.

Nevertheless, we will need to consider several factors 
applying the approach, as they may affect the power of 
assessing longitudinal association and the accuracy of 
the prediction model. Firstly, while there is no specific 
simulation study on sample size or a formally power anal-
ysis available, it is recommended to start with a reason-
able sample size, and then use cross-validation to assess 
if the model estimates are stable. Secondly, although 
fPCA for sparse functional data is specifically designed 
for irregular repeated measure data, we may encounter 
some estimation issue when we have very scarce repeated 
measures around similar time points especially when the 
overall sample size is small. In practice, the true shape of 
the dynamic association is often unknown, necessitat-
ing careful examination of the observed data structure. 
Selecting the appropriate regularization, such as deter-
mining the number of knots in penalized splines for 
smoothing trajectories, is crucial to achieving optimal 
results. The “face” package typically employs penalized 
splines, which often require a relatively larger number of 
knots. This approach allows for a balance between model 
fitting and complexity [31]. Consequently, we can cap-
ture the nonlinear shape of the eigenfunctions (supple-
ment figure S1), which serve as the basis for estimating 
beta, the coefficient function over time. Furthermore, 
if individual data measured over time tend to have high 
variation, more repeated measures will be beneficial in 
capturing the individual trend.
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There are also a couple of limitations to this method. 
Firstly, as shown in Fig.  5, the predicted values tend to 
be biased downward for larger HbA1c values. Similar to 
other approaches, this is attributed to the limited num-
ber of samples with higher HbA1c values. Secondly, since 
the functional regression model is essentially a two-step 
approach, any bias in the functional principal compo-
nent scores derived from the first stage could potentially 
affect the subsequent regression model. Joint model [46] 
for both outcome and the intensive longitudinal data 
together could be a valuable future direction to pursue. 
However, pursuing this direction would require consider-
able effort in developing methodologies, as there are lim-
ited existing tools available. Nonetheless, the simplicity 
provided by the two-step procedure provides an advan-
tage in terms of computational ease [46].

Conclusion
Given the availability of ILD generated from mobile 
health devices, FDA provides a promising tool to analyze 
data at a granular level in mobile health research. Com-
pared to the response feature approach that averages data 
over time, FDA provides insights into trends and correla-
tion information contained within intensive data, reveal-
ing hidden longitudinal patterns. Specifically, functional 
principal component regression is a useful tool for assess-
ing dynamic longitudinal association between intensively 
repeated measurements and health outcomes, predicting 
health outcomes and recovering individual trajectories.
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