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Abstract 

Background  Group sequential designs are one of the most widely used methodologies for adaptive design in ran-
domized clinical trials. In settings where early outcomes are available, they offer large gains in efficiency compared 
to a fixed design. However, such designs are underused and used predominantly in therapeutic areas where there 
is expertise and experience in implementation. One barrier to their greater use is the requirement to undertake simu-
lation studies at the planning stage that require considerable knowledge, coding experience and additional costs. 
Based on some modest assumptions about the likely patterns of recruitment and the covariance structure of the out-
comes, some simple analytic expressions are presented that negate the need to undertake simulations.

Methods  A model for longitudinal outcomes with an assumed approximate multivariate normal distribution 
and three contrasting simple recruitment models are described, based on fixed, increasing and decreasing rates. 
For assumed uniform and exponential correlation models, analytic expressions for the variance of the treatment effect 
and the effects of the early outcomes on reducing this variance at the primary outcome time-point are presented. 
Expressions for the minimum and maximum values show how the correlations and timing of the early outcomes 
affect design efficiency.

Results  Simulations showed how patterns of information accrual varied between correlation and recruitment mod-
els, and consequentially to some general guidance for planning a trial. Using a previously reported group sequential 
trial as an exemplar, it is shown how the analytic expressions given here could have been used as a quick and flexible 
planning tool, avoiding the need for extensive simulation studies based on individual participant data.

Conclusions  The analytic expressions described can be routinely used at the planning stage of a putative trial, based 
on some modest assumptions about the likely number of outcomes and when they might occur and the expected 
recruitment patterns. Numerical simulations showed that these models behaved sensibly and allowed a range 
of design options to be explored in a way that would have been difficult and time-consuming if the previously 
described method of simulating individual trial participant data had been used.

Keywords  Group sequential designs, Early outcomes, Randomized controlled trials, Planning

Background
Group sequential designs (GSD) are one of the most 
widely used methodologies for adaptive design in ran-
domized clinical trials [1]. In GSD researchers collect 
data and undertake sequential analyses with the oppor-
tunity to either reject the null hypothesis, stop the study 
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for futility or continue recruitment at an interim look, 
before reaching the planned sample size [2]. Despite 
the self evident gains in efficiency that GSD and other 
adaptive designs offer due to the possibility of stopping 
early, the perception in much of the statistical commu-
nity is that they are still underused and where they are 
used they are used only within niche therapeutic areas 
where there is expertise and experience in implementa-
tion (e.g. in pharmaceutical trials testing drugs in oncol-
ogy) [1]. There has been much discussion of the reasons 
why this is the case and how the barriers to uptake might 
be overcome, in particular the lack of knowledge, expe-
rience, statistical expertise and opportunity in the clini-
cal trials community, outside of specialist teams [3]. A 
recent publication showed that GSD are feasible and are 
likely to be considerably more efficient than fixed sample 
size designs for pragmatic clinical trials, an application 
area where adaptive designs are generally never used [4]. 
Pragmatic trials typically test complex interventions (e.g. 
surgery, exercise, cognitive behavioural therapy) in rou-
tine clinical practice and are characterised by relatively 
large sample sizes and long follow-up periods [5, 6]. In 
such settings, GSD that use data from not only the final 
(primary) study outcome but also from early outcomes at 
interim analyses to inform stopping decisions have par-
ticular attraction due in large part to the use of patient-
reported outcome measures (PROMs) that show strong 
associations between early and final outcomes [4]. This 
approach is exemplified by the START:REACTS trial 
that used this methodology to assess a novel interven-
tion for repair of rotator cuff tendon tears [7]. The initial 
design and planning of this study which was based on 
simulating individual trial participant data, from a mul-
tivariate distribution [8], under an assumed model for 
study recruitment patterns [9] in order to assess likely 
information accumulation during a proposed trial, is a 
very general and highly effective method. However, such 
simulations are complex and time-consuming to set-up 
and implement and therefore provide an additional bar-
rier, amongst many others previously identified [3], to the 
widespread use of GSD, particularly for trialists and those 
statisticians who are not specialists in this area. If we are 
willing to make some modest assumptions about the dis-
tribution of the outcomes, the likely correlation structure 
and recruitment patterns we might expect, then we can 
derive relatively simple analytic expressions for informa-
tion accrual during a trial. This would allow us to explore 
a range of options for the timing and number of interim 
analyses, in a routine way without the need for simulating 
individual participant data, and as such make the meth-
ods much more accessible to potential non-expert users. 
In order to do this, we propose a number of recruitment 
models and two contrasting correlation models for the 

temporal sequence of outcomes observed for individual 
study participants. The recruitment and correlation mod-
els together provide expressions for the variance of the 
treatment effect estimate and a natural means to distin-
guish and make explicit the contribution to the informa-
tion fraction of the early and primary outcome data at an 
interim analysis. Previous work has discussed the timing 
of follow-up measurements for a single early outcome, 
using a simple linear model for the decay in the correla-
tion between the final and early outcomes over time [10]. 
The models we develop here allow us to explore this issue 
in the general case of more than one early endpoint using 
an information adaptive group sequential approach to 
improve decision making at interim analyses. More gen-
erally, others have also suggested using information from 
prognostic baseline covariates (e.g. from baseline scores, 
comorbidities and patient demographics) in addition to 
early outcomes to inform interim decision making [11, 
12]. Our focus is on stopping for treatment efficacy or 
futility, therefore we do not consider other adaptions that 
might be made to the trial design (e.g. sample size re-esti-
mation) or more generally issues around inference and 
how to obtain unbiased estimates of treatment effects 
for group-sequential trials that stop early [13–15]. Also, 
given the overwhelming predominance of continuous 
outcomes in pragmatic trials of complex interventions, 
we will not discuss binary or time-to-event outcomes. 
Although the motivation for the work is from our own 
experiences with pragmatic trials, the methodological 
approaches described here are applicable much more 
widely to GSD in any application area where the issues 
and design characteristics we highlight are important.

We structure the paper as follows. In “Longitudinal out-
comes” section, we describe a model for longitudinal out-
comes with an assumed approximate multivariate normal 
distribution. “Recruitment and follow-up models” section 
develops three contrasting simple models for recruit-
ment of participants into a clinical trial, and “Correlation 
models”  section develops the models from “Longitudinal 
outcomes” and “Recruitment and follow-up models”  sec-
tions for a uniform and an exponential correlation model. 
“Numerical examples”  section provides some numerical 
examples to illustrate the models. The paper concludes in 
“Discussion”  section with a discussion, including details 
of the availability of software for implementation of the 
methods described.

Longitudinal outcomes
A group sequential trial
Consider a two-arm randomized controlled trial where 
participants are randomized to either a treatment or a 
control arm, followed-up, assessed and the primary out-
come observed at a sequence of s occasions at time-points 
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d1, . . . , ds , ordered such that ds > · · · > d1 . In such a set-
ting, the primary interest of the trial is often to estimate 
the effect of the treatment on the study outcome at time-
point ds , the primary or final study outcome time-point. 
At some time t during the study, the total number of par-
ticipants with data at follow-up occasion r ( r = 1, . . . , s ) 
is N0r + N1r , where N0r is the number in the control 
arm and N1r is the number in the treatment arm. Due to 
the ordering of the follow-up occasions, prior to the com-
pletion of trial follow-up, assuming data are complete, 
the number of participants with outcome data are struc-
tured such that N01 ≥ N02 ≥ · · · ≥ N0s−1 ≥ N0s and 
N11 ≥ N12 ≥ · · · ≥ N1s−1 ≥ N1s . For instance, if the 
primary study outcome time-point is at 12 months after 
recruitment, with early outcomes at 3 and 6 months, then 
at all times prior to completion of follow-up we would 
expect to have more 3 month data than 6 month data, 
and more 3 and 6 month data than 12 month data.

If the full study sample of N participants is recruited 
in a period of time of length TR (the recruitment period) 
and the primary outcome is observed at time ds (after 
recruitment) then study follow-up is complete, and the 
trial ends, at time ds + TR . Importantly in this setting, 
there is a period of time between primary outcome data 
being available for analysis and the end of recruitment 
( ds < t < TR ). During this so-called window of oppor-
tunity, there is the possibility of undertaking interim 
analyses, potentially stopping the study early for either 
treatment futility or efficacy. In such settings, if the 
interim analyses use final outcome data only, then the 
opportunities for stopping are likely to be extremely lim-
ited as trial recruitment will often have been completed 
before there is sufficient final outcome data available for 
informed stopping decisions to be made [4, 8]. However, 
if the early outcomes for trial participants (at occasions 
dr; r = 1, . . . , s − 1 ) are correlated with their final out-
comes (at ds ), then a group sequential analysis [2] which 
uses information from both the early and final outcomes 
to estimate the treatment effect at ds is likely to lead to 
considerable increases in statistical power and also to 
make early stopping feasible [10, 16].

A number of authors have investigated this problem 
[8, 10, 17] and more generally the use of group-sequen-
tial analysis for longitudinal data [18, 19]. In the most 
simple possible setting, for instance the double-regres-
sion method described by Engel and Walstra [17], there 
is a final (long-term) and a single early (short-term or 
concomitant) endpoint that are correlated for individu-
als at the two time points. The main motivation for using 
information from the early outcomes in addition to the 
final outcomes in a clinical setting is that it allows us to 
conduct the trial in a more efficient manner by poten-
tially reaching a conclusive result more quickly and 

limiting patient exposure to ineffective or unsafe treat-
ments, if the study ultimately provides little support for 
the efficacy of the intervention under test. Stallard [16], 
for instance, showed that using early outcome data, in 
the setting of a seamless phase II/III clinical trial with 
treatment selection, results in an increase in statistical 
power when data are correlated with the final outcome. 
A general approach in the setting of a sequential clini-
cal trial, with a number of interim analyses, with a single 
long-term and potentially many short-term endpoints 
for a two-arm trial was first suggested by Galbraith 
and Marschner [10] and discussed further by Parsons 
et  al. for a clinical trial in shoulder surgery [8], includ-
ing extensive simulations for a prospective sample size 
calculation, and for surgical trials in general [4]. These 
authors rely in all cases on the independent increments 
argument, based on an asymptotic joint multivariate 
normal distribution for the sequential test statistics, 
for construction of valid group sequential designs for 
the longitudinal models used, e.g. linear mixed-effects 
and generalized least squares models [2, 20]. Due to 
the nature of the applications described, the focus here 
is purely on using early outcomes only to inform deci-
sion making. More generally, others have described 
approaches in settings where baseline (prognostic) 
covariates are available in addition to or in preference to 
early outcomes [12, 21].

Data model
Let yijr be the outcome for the ith of N participants 
(i = 1, . . . ,N ) , at follow-up occasion r (r = 1, . . . , s) 
recruited into intervention arm j (0 = control and 1 = treat-
ment) of the group sequential trial. We assume hereafter 
independence between the trial participants and that the 
distribution of outcomes (yij1, . . . , yijs) is multivariate nor-
mal, with mean (µj1, . . . ,µjs) and s × s covariance matrix

where σr is the standard deviation of the outcome at 
occasion r and ρrr′ is the correlation between endpoints 
at occasions r = 1, . . . , s and r′ = 1, . . . , s . Noting also 
that � can be expressed as � = S

1/2
RS

1/2 , for correlation 
matrix R and (diagonal) variance matrix S.

Expressing as a linear longitudinal model with cor-
related errors, under the assumption of multivariate 
normality (MVN), the vector of outcomes yi , for par-
ticipant i, has distribution yi ∼ MVN(Xiβ ,�i) , where �i 
is the r × r covariance matrix of yi , for the r observed 
outcomes for participant i, characterised by covariance 

(1)� =

σ 2
1 σ1σ2ρ12 . . . σ1σsρ1s

σ2σ1ρ21 σ 2
2 . . . σ2σsρ2s

...
...

. . .
...

σsσ1ρs1 σsσ2ρs2 . . . σ 2
s

,
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parameters σr and ρrr′ . Xi is a r × 2s design matrix and β 
is a 2s × 1 vector of unknown model parameters, where 
for inferential purposes the most important is βs the 
effect of the treatment on the study outcome at time-
point ds , the primary study endpoint.

The maximum likelihood estimator for β , under the 
multivariate normal assumption, for known � , is the 
generalized least squares estimator [22]

with variance given by

Estimates of model parameters β and their variances 
var(β) , and consequently information, follow naturally 
given � , which is obtained from estimates of ρ and σ . 
The covariance parameters could, in principle, be fixed 
to known or expected values but are generally esti-
mated from accumulating data as a trial progresses. 
For instance, Galbraith and Marschner [10] use mixed-
effects models for analysis of correlated data to esti-
mate ρ and σ . In practice this can be implemented, for 
example, by fitting separate fixed-effects for each study 
outcome time dr with an unstructured error covari-
ance using the function lme in R [23] package nlme. 
However, for practical reasons during trial planning 
and monitoring we prefer to use the generalized least 
squares model function gls in R package nlme, which 
unlike the mixed-effects model, provides explicit esti-
mates of the covariance parameters [24]. Either  the 
mixed-effects or generalized least squares formulation 
provides consistent and unbiased estimates of model 
parameters [4], under an assumed multivariate normal 
distribution with a general covariance structure, com-
mon follow-up times for each individual and missing 
outcomes that are assumed to be a consequence of the 
shortened follow-up duration.

Trial planning and monitoring
The primary interest of the clinical trial is to estimate 
βs and its variance var(βs) . Easily interpretable explicit 
expression for var(βs) do not exist for general s, and 
general covariance matrix � . However, expressions for 
var(βs) can be obtained directly for the most simple 
cases, under the structured data assumptions of “Longi-
tudinal outcomes”  section, where there are one ( s = 2 ) 
and two ( s = 3 ) early outcomes [4]. For instance, for the 
simplest possible case s = 2,

(2)β =
( N
∑

i=1

X ′
i�

−1
i Xi

)−1( N
∑

i=1

X ′
i�

−1
i yi

)

,

(3)var(β) =
( N
∑

i=1

X ′
i�

−1
i Xi

)−1

.

Of particular practical importance when planning 
an information adaptive group sequential study is to 
understand how information on the treatment effect 
at a time t, I(t) = 1/var(βs(t)) , is likely to accumulate 
during recruitment and follow-up. Typically pre-set 
expected information thresholds are used to trigger 
interim analyses, and to construct lower and upper 
stopping boundaries at the interim analyses, with stop-
ping decisions being made based on estimates of βs and 
var(βs) [8]. Clearly, the information at some time t dur-
ing recruitment depends on the covariance parameters 
ρ = ρ12, . . . , ρrr′ and σs , and the number of participants 
( N0r and N1r ) with data at each follow-up occasion r.

In order to plan how a trial might be implemented and if, 
and when, interim analyses should take place, we need to 
understand how information is likely to accumulate as the 
study proceeds. To do this we need to make some a priori 
assumptions about both the expected patterns of recruit-
ment and the correlation structure between the early and 
final outcomes. In the most general settings we might 
imagine, with complex patterns of recruitment and accrual 
of study data and unstructured correlations between out-
comes, simulation methods may be the only way to pro-
ceed at the planning stage [8]. Such an approach is hard 
to implement, time-consuming and often provides little or 
no insight into the general principles at play and how these 
might guide us when we make future modifications to the 
design or when planning future studies. However, if we are 
willing to make some reasonable assumptions about the 
likely patterns of recruitment and the structure of the cor-
relations then we can obtain explicit analytic expressions 
for var(βs) much more quickly and simply, and use these as 
a means to plan the study.

When planning a trial we assume that a fixed num-
ber of  early outcomes are available throughout the study 
(for instance, a primary outcome at 12 months, with two 
early outcomes at 3 and 6 months) and that, in principle, 
the timings of the early outcomes could be changed (for 
instance, to 4 and 8 months). Typically, the exact correla-
tions between early and primary outcomes are unknown. 
However, we can speculate on the likely correlation struc-
ture as a means to understand how information might 
be accumulated as follow-up proceeds. Two widely used 
correlation models for longitudinal data are described in 
“Correlation models” section. At the design stage, for some 
arbitrarily selected time-point t during recruitment we 
will generally not know the exact number of participants 
recruited or the number of participants ( N0r and N1r ) 
with data at each follow-up occasion r. We discuss simple 
models for predicting recruitment in “Recruitment and 

(4)

var(β2) = σ 2

2

[

(N02 + N12)(1− ρ2
12
)

N02N12
+

(N01 + N11)ρ
2
12

N01N11

]

.
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follow-up models” section. Given correlation and recruit-
ment models, together with an estimate of σs (e.g. from 
previously reported studies or pilot data), we can predict 
how var(βs) , and therefore information, will vary during 
study follow-up and use this to motivate our choice of the 
number and timings of early outcome assessments and     
interim analyses.

When monitoring a study, often more important than 
the information itself is the information fraction or infor-
mation time τ (t) at an interim analysis at time t, defined by 
τ (t) = I(t)/I , where  I(t) and I are the information levels 
at time t and the study end, respectively [25]. Knowing the 
information fraction τ (t) allows us to determine lower and 
upper boundaries (for planned futility and efficacy stop-
ping) and boundary crossing probabilities at an interim 
analysis, for some given boundary crossing probabilities 
under the null hypothesis, based on canonical joint distri-
bution properties for group sequential trials [2]. Bounda-
ries and probabilities can, for instance, be calculated using 
appropriate functions from the gsDesign package in 
R [26]. An example of how this might be implemented in 
practice is provided in “Numerical examples” section, using 
as an exemplar the START:REACTS study of sub-acromial 
spacer for tears affecting rotator cuff tendons [7, 27].

Recruitment and follow‑up models
Assuming the data  are structured as in “A group sequen-
tial trial”  section and  are  complete, consistent with what 
we would do during planning and sample size calculations 
in a conventional trial design based on a single primary 
endpoint. We can write a general expression for the num-
ber of participants providing outcome data from follow-
up occasion r at time t as Nr(t, dr) = kgr(t, dr) , where k 
is a constant depending on the planned sample size N and 
recruitment period TR only and gr(t, dr) is some func-
tion of t and the follow-up time point dr , measured in the 
same units as t. For notational convenience, we define 
r = 0 to be the recruitment occasion and thus g0(t, d0) 
is the result of the function gr(t, dr) when r = 0 , that is 
at the time-point when recruitment occurs at dr = 0 , 
such that N0(t, d0) = kg0(t, d0) is the number of partici-
pants recruited at time t. For dr < t ≤ dr + TR , the num-
ber of participants is Nr(t, dr) = kgr(t, dr) and at t < dr 
prior to outcome data becoming available is Nr(t, dr) = 0 
and at t > dr + TR when data collection has been com-
pleted for outcome r is Nr(t, dr) = N . We also note that   
nrr′(t) = Nr(t, dr)/Nr′(t, dr′) , the ratio of the number of 
study participants with outcome data from follow-up occa-
sion dr to study participants with outcome data from fol-
low-up occasion dr′ at time t, is equal to gr(t, dr)/gr′(t, dr′) . 
Introducing a weight 0 < φ < 1 that allows for une-
qual group sizes, gives intervention group sizes of 
N0r(t, dr) = φNr(t, dr) and N1r(t) = (1− φ)Nr(t, dr).

Fixed rate
In the simplest possible situation, setting k = N/TR and 
gr(t, dr) = (t − dr) in the expression Nr(t, dr) = kgr(t, dr) 
leads to a model with a fixed rate of recruitment ( �f ) and 
follow-up data accrual, where �f = N/TR participants 
are recruited into the study for each of t study days, if 
TR is measured in days. The total number of participants 
recruited into the study at time t for the fixed model is 
given by N0(t) = Nt/TR ; Fig. 1a shows total recruitment 
and follow-up data accrual curves for this model.

Linearly increasing rate
Setting k = N/{TR(TR + 1)} and gr(t, dr) = (t − dr)((t − dr)+ 1) 
in the expression Nr(t, dr) = kgr(t, dr) leads to a 
model with an increasing rate of recruitment given by 
�i(t) = 2Nt/{TR(TR + 1)} . In this model the mean rate 
of recruitment across the whole recruitment period for 
this model is N/TR , the same as the fixed rate param-
eter model �f , with the starting rate (at t = 1 ) given by 
�i(1) = 2N/TR(TR + 1) and the end rate (at t = TR ) 
by �i(TR) = 2N/(TR + 1) , noting that �i(1) < �f and 
�i(TR) > �f . The total number of participants recruited 
into the study at time t for the increasing rate model is 
given by N0(t) = Nt(t + 1)/{TR(TR + 1)} ; Fig. 1b shows 
total recruitment and follow-up data accrual curves for 
this model.

Linearly decreasing rate
Formulating deliberately as a contrast to the model of “Lin-
early increasing rate” section, setting k = N/{TR(TR + 1)} 
and gr(t, dr) = (t − dr)(2TR − (t − dr)+ 1) leads to 
a model with a decreasing rate of recruitment given by 
�d(t) = 2N (TR − t + 1)/{TR(TR + 1)} . In this model the 
mean rate of recruitment across the whole recruitment 
period for this model is also N/TR , the same as the fixed 
rate parameter model �f , with the starting rate (at t = 1 ) 
given by �d(1) = 2N/{(TR + 1)} and the end rate (at 
t = TR ) by �d(TR) = 2N/{TR(TR + 1)} , noting that, in a 
reversing of the relationship for the increasing rate model, 
�d(1) > �f and �d(TR) < �f . The total number of partici-
pants recruited at time t for the decreasing rate model is 
given by N0(t) = Nt(2TR − t + 1)/{TR(TR + 1)} ; Fig.  1c 
shows total recruitment and follow-up data accrual curves 
for this model.

Correlation models
We consider two common single parameter correla-
tion models; the uniform and exponential models [22], 
the latter is also known as the first-order autoregressive 
(AR1) model. These models offer contrasting views on 
the likely correlation structure between early and final 
outcomes. We choose to use α and γ for the parameters 
for the uniform and exponential models, in the following 
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descriptions, to reflect the fact that they have quite differ-
ent interpretations.

Uniform
The uniform correlation model is the natural basis for a 
random-effects model, which we can motivate in our set-
ting by thinking of the covariance structure of the data as 
a consequence of random variation amongst (unobserved) 
subject-specific characteristics of participants in a clinical 
trial. The uniform correlation model is widely seen in tri-
als using PROMs, where participants are asked to assess 

their own status or functional abilities [4]. It assumes the 
correlations between measurements are constant regard-
less of how far apart in time they are, with measurements 

on a unit (participant in a trial) at time-points r = 1, . . . , s 
and r′ = 1, . . . , s given by ρrr′ = α when r  = r′ and ρrr′ = 1 
when r = r′.

Expression for var(βs)
For the uniform correlation model, assuming that the 
number of participants with outcome data are structured 
in the manner described in “Longitudinal outcomes” and 
“Recruitment and follow-up models” sections, the variance 
of the treatment effect on the study outcome at time-point 
s (the primary study endpoint) is given by

where det(Rm) = (1− α)m−1(1+ (m− 1)α) is the deter-
minant of the m×m correlation matrix Rm (see Appen-
dix A1 for details). Therefore we can also write as follows;

var(βunif
s ) = σ 2

s

[

N01 + N11

N01N11
+

s−1
∑

m=1

det(Rm+1)

det(Rm)

(

N0m+1 + N1m+1

N0m+1N1m+1
− N0m + N1m

N0mN1m

)]

,

Fig. 1  Total recruitment and follow-up accrual curves for the primary and all early follow-up endpoints at times d1, d2, . . . , dr , . . . , ds for (a) the fixed 
rate recruitment model, b the linearly increasing rate recruitment model and (c) the linearly decreasing rate recruitment model. With annotation 
showing numbers of participants recruited N0 and with follow-up data at N1,N2, . . . ,Nr , . . . ,Ns at times t, set such that N0 is the same for each 
setting
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For the simplest possible case where s = 2 , 
det(R1) = 1 and det(R2) = (1− α)(1+ α) = 1− α2 
then, as we would expect, expressions (4) and (5) 
are equal (i.e. var(β2) = var(βunif

2 ) ), when α = ρ12 . 
At the extremes of α , we note that when α = 1 , then 
var(βunif

s ) = σ 2
s (N01 + N11)/N01N11 and we con-

clude that data (information) from the early outcome 
(at s = 1 ) only are important and when α = 0 , then 
var(βunif

s ) = σ 2
s (N0s + N1s)/N0sN1s and data at earlier 

times provide no information.

Recruitment models and var(βs)
Substituting the expressions for N0r and N1r , from 
“Recruitment and follow-up models”  section, into Eq. 
(5) gives the following expression for the variance of the 
treatment effect on the primary outcome at time t, where 
we require ds < t ≤ TR;

When the correlation is zero ( α = 0 ) between early and 
primary outcomes, then det(Rm+1) = det(Rm) = 1 for all 
m and noting that

then the variance when there is no correlation, var(β0
s ) , is 

given by

where we note that kgs(t, ds) is equal to Ns the number of 
study participants with primary outcome data at time t. 
We can construct a measure Vs(t) to be the relative effect 
of the early outcomes, due to their correlation with the 
primary outcome, on reducing the variance of the pri-
mary outcome by dividing var(βs(t)) by var(β0

s (t)) . For 
the uniform model this is

(5)
var(βunif

s ) = σ 2
s

[

N01 + N11

N01N11
+

s−1
∑

m=1

(1− α)(1+mα)

(1+ (m− 1)α)

(

N0m+1 + N1m+1

N0m+1N1m+1
−

N0m + N1m

N0mN1m

)]

.

(6)
var(βunif

s (t)) =
σ 2
s

kφ(1− φ)

[

1

g1(t, d1)
+

s−1
∑

m=1

(1− α)(1+mα)

(1+ (m− 1)α)

(

1

gm+1(t, dm+1)
−

1

gm(t, dm)

)]

.

s−1
∑

m=1

(

1

gm+1(t, dm+1)
−

1

gm(t, dm)

)

=
1

gs(t, ds)
−

1

g1(t, d1)
,

(7)var(β0
s (t)) =

σ 2
s

kφ(1− φ)gs(t, ds)
,

Where, ns1(t) ≤ Vunif
s (t) ≤ 1 , with the lower constraint 

(giving the maximum possible benefit from the early out-
comes) occurring when α = 1 and information on the 
primary outcome (at ds ) comes entirely from the first 
early outcome (at d1 ) and the upper constraint occurring 
when α = 0 and there is no information from any of the 
early outcomes. More generally, for values of the correla-
tion parameter between these limits, then Vunif

s (t) varies 
as a function of both t and dr (r = 1, . . . , s) , and their rela-
tive spacings.

Minimum and maximum of Vunif
s (t)

For a given value of α , the minimum of Vunif
s (t) occurs 

trivially for the uniform correlation model when we 

maximize the data available for each intermediate early 
outcome by moving them all towards the earliest out-
come at d1 . In this setting dm → d1 and functions 
gm(t, dm) → g1(t, d1) and consequently nsm(t) → ns1(t) 
for all m = 2, . . . , s − 1 and then from expression (8), not-
ing that nss = 1 , the minimum of Vunif

s (t) is given by

The maximum occurs when all the intermediate early 
outcomes are moved towards the final outcome at ds . In 
this setting dm → ds and functions gm(t, dm) → gs(t, d1) 
and consequently nsm(t) → 1 for all m = 2, . . . , s − 1 
and then from expression (8) the maximum of Vunif

s (t) is 
given by

(8)

V
unif

s (t) = ns1(t)+
s−1
∑

m=1

(1− α)(1+mα)

(1+ (m− 1)α)
(ns(m+1)(t)− nsm(t)).

(9)min
d2,...,ds−1

(

V
unif
s (t)

)

= ns1(t)+
(1− α)(1+ (s − 1)α)

(1+ (s − 2)α)
(1− ns1(t)).

(10)

max
d2,...,ds−1

(

Vunif
s (t)

)

= ns1(t)+ (1− α2)(1− ns1(t)).
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The terms nrr′ in expression (8) represent the effects 
of the changing sample size, with different recruitment 
models, and as such are independent of the correlation 
parameter α . The effect of the correlation α on Vunif

s (t) 
is fixed and independent of the spacing or differences 
between the early endpoints.

Exponential
The exponential model, in contrast to the uniform 
model, assumes that the correlation between pairs of 
measurements on the same subject decays to zero as the 
time separation between them increases. This model is 
widely used for longitudinal outcomes [22] and evidence 
from our own work suggests that it is a useful working 
assumption for modelling the association between serial 
measurements of PROMs for many large pragmatic clini-
cal trials [4]. In the exponential model the correlation 
between a pair of measurements on a unit (participant 
in a trial) at time-points r and r′ tends towards zero as 
the time between measurements increases ρrr′ = γ |dr−dr′ | 
[22]. Where the dr are increasing ordered times that indi-

cates the relative times of assessment. The parameter 
γ expresses the strength of association, for unit separa-
tion (i.e. where |dr − dr′ | = 1 ), and for the applications 
discussed here for ease of interpretation is such that 
0 ≤ γ < 1.

Expression for var(βs)
For an assumed exponential model and a known, or an 
assumed, value of γ , then for data structured in the man-
ner described in “Longitudinal outcomes” and “Recruit-
ment and follow-up models”  sections, var(βexp

s ) is given 
after some algebraic manipulation (see Appendix A2 for 
details), for s ≥ 3 , by

(11)

var(βexp
s ) = σ 2

s

[

(N0s + N1s){1− γ 2(ds−ds−1)}
N0sN1s

+

s−2
∑

m=1

(N0s−m + N1s−m){1− γ 2(ds−m−ds−m−1)}γ 2(ds−ds−m)

N0s−mN1s−m

+

(N01 + N11)γ
2(ds−d1)

N01N11

]

.

In this setting, without loss of generality, we can set 
the timings of the follow-up assessments dr such that 
in all settings d1 = 1 and ds = s such that, for instance, 
if d1 = 1, d2 = 3, d3 = 7/2 and d4 = 4 then this might 
represent assessments at 1, 3, 3.5 and 4 years or 4, 12, 
14 and 16 months, depending on whether the base unit 
of time is 1 year or 4 months. Although, clearly the cor-
relation parameter γ will generally differ depending on 
whether we are considering the former or latter set-
tings. In the most general case, similar arguments can 
be applied if we wish to make follow-up assessments 
such that ds is not a multiple of d1 . For instance, if assess-
ments are planned at 4, 12, 18 and 22 months, then setting 
d1 = 1, d2 = 7/3, d3 = 10/3 and d4 = 4 ensures that, as 
we would expect given the relative distances, correlations 
between 18 and 22 month assessments γ (d4−d3) = γ 2/3 
are the square of those between 4 and 12 month assess-
ments γ (d2−d1) = γ 4/3 , for a given value of γ . If the assess-
ments are equally spaced in our model (i.e. when dr = r 
for r = 1, . . . , s ) and (ds − ds−1) = · · · = (d2 − d1) = 1 , 
(ds − ds−2) = · · · = (d3 − d1) = 2 , . . . , (ds − d1) = s − 1 , then

For the case of a single early and a final outcome, then 
var(β

exp
2 ) is given, by dropping the middle term in the 

square brackets and setting s = 2 in which case, as we 
might expect, var(β2) = var(βunif

2 ) = var(β
exp
2 ) , if α = γ.

Recruitment models and var(βs)
Substituting the expressions for N0r and N1r , from 
“Recruitment and follow-up models”  section, into Eq. 
(11) gives the following expression for the variance of the 
treatment effect on the primary outcome at time t;

Noting that the variance when there is no correlation 
( γ = 0 ) between early and primary outcomes var(β0

s (t)) , 
is given by expression (7), then the effect of the correla-
tion, due to the early outcomes, on reducing the vari-
ance of the primary outcome for the exponential model 
is given by

(12)
var(βexp

s ) = σ 2
s

[

(N0s + N1s)(1− γ 2)

N0sN1s
+

(1− γ 2)

s−2
∑

m=1

(N0s−m + N1s−m)γ
2m

N0s−mN1s−m
+

(N01 + N11)γ
2(s−1)

N01N11

]

.

(13)
var(βexp

s (t)) = σ 2
s

kφ(1− φ)

[

{1− γ 2(ds−ds−1)}
gs(t, ds)

+

s−2
∑

m=1

{1− γ 2(ds−m−ds−m−1)}γ 2(ds−ds−m)

gs−m(t, ds−m)
+

γ 2(ds−d1)

g1(t, d1)

]

.
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Where ns1(t) ≤ V
exp
s (t) ≤ 1 , with the lower constraint 

occurring when γ = 1 and information on the primary 
outcome (at ds ) comes entirely from the first early out-
come (at d1 ) and the upper constraint occurring when 
γ = 0 and there is no information from any of the early 
outcomes. More generally, for values of the correlation 
parameter between these limits, then Vexp

s (t) varies as a 
function of both t and dr (r = 1, . . . , s) , and their relative 
spacings.

Minimum and maximum of Vexp
s (t)

The maximum of Vexp
s (t) , for known γ , occurs when 

ds−1 → d1 and as a consequence all the intermediate terms 
move also towards d1 ; i.e. ds−1 → ds−2 → · · · → d2 → d1 , 
is given by

In contrast to the uniform correlation model, there 
is no simple expression for the minimum of Vexp

s (t) . As 
we move intermediate outcomes towards the earliest 
outcome dm → d1 then functions gm(t, dm) → g1(t, d1) 
for all m = 2, . . . , s − 1 and we have more data available 
which, all other things being equal, will minimise Vexp

s (t) . 
However, when we increase the amount of data available 
by moving intermediate outcomes towards the earliest 
outcome we also increase the distances ds − ds−m which, 
from expression (14), clearly acts to increase Vexp

s (t) by 
making terms γ 2(ds−ds−m) → 0.

The settings of d2, . . . , ds−1 that minimise Vexp
s (t) , will 

vary with the correlation parameter γ and s. In general, 
minimums of Vexp

s (t) can be obtained numerically using 
linearly constrained optimization methods; e.g. using 
function constrOptim in R, with gradients set to be 
the derivatives ∂Vexp

s /∂dm , which are relatively simple to 
calculate (see Appendix A3 for details) [23].

Information
The information fraction, when the correlation 
between early outcomes and the final outcome is zero 
( τ0 ) at time t, is given by the information at time t 
divided by the information at the study end which is 
τ0(t) = var(β0

s (t = ds + TR))/var(β
0
s (t)) [25]; noting 

that at the study end t = ds + TR . From expression (7), 
this can be written more simply as τ0(t) = Ns(t, ds)/N  , 

(14)
Vexp
s (t) = 1− γ 2(ds−ds−1)+

s−2
∑

m=1

ns(s−m)(t)(1− γ 2(ds−m−ds−m−1))γ 2(ds−ds−m) + ns1(t)γ
2(ds−d1).

(15)

max
d2,...,ds−1

(

V
exp
s (t)

)

= ns1(t)+ (1− γ 2(ds−d1))(1− ns1(t)).

the proportion of participants with final outcome data at 
time t, or alternatively as τ0(t) = gs(t, ds)/gs(ds + TR, ds).

From previously, the relative effect of the early out-
comes, due to their correlation with the primary out-
come, on reducing the variance of the primary outcome is 
Vs(t) = var(βs(t))/var(β

0
s (t)) . Therefore, the information 

fraction τ at time t, for the full longitudinal model includ-
ing the contribution of the early outcomes, is given by

This allows us to make explicit the distinction between 
information that comes directly from observation of the 
final outcome ( τ0 ) and information that comes from the 
early outcomes ( Vs ) at time t. It also makes clear that 
1/Vs(t) is the proportionate increase in the informa-
tion fraction τ at time t due to the early outcomes. For 
instance, if Vs(t) = 0.8 , then we have 1.25 times as much 
information at time t than we would have had if the early 
outcomes were uncorrelated with the primary outcome.

Numerical examples
Uniform correlation model
To understand the properties of the uniform correlation 
model in the setting described, we calculate Vunif

s  for typ-
ical values of s = 2, 3, 4, 5, 6 for the recruitment models 
of “Recruitment and follow-up models” section. Without 
loss of generality, we set ds = 2 and d1 = 1 and arbitrarily 
set the recruitment period TR to be a fixed multiple of ds 
such that the information fraction τ0(tw) when α = 0 (i.e. 
the proportion of participants with final outcome data), 
at three equally spaced interim analyses ( w = 1, 2, 3 ), are 
τ0(t1) = 0.15 , τ0(t2) = 0.30 and τ0(t3) = 0.45 , which 
we nominally refer to hereafter as early, mid and late. 
The actually timings of the interim analyses, relative to 
TR , will depend on the selected recruitment model; see 
Appendix A4 for details. We do this to allow us to make 
simple comparisons between the recruitment models and 
values of s at each the interim analyses.

Plots showing the difference in minimum and maxi-
mum values and the empirical distribution of Vunif

s  for 
equal group sizes ( φ = 0.5 ), with varying d2, . . . , ds−1 , for 
correlations in the range 0 ≤ α < 1 and the decreasing, 
fixed and increasing rate recruitment models are avail-
able in the supplementary files (see Additional file 1, Figs. 
S1 to S9). The pattern of differences between recruitment 
models and interim analyses are consistent across values 

(16)τ (t) = τ0(t)/Vs(t).
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of α , with values for Vunif
s

 decreasing monotonically with 
increasing α ; the larger the correlation, the greater the 
information available from the early outcomes. Picking a 
typical value of α = 0.5 for illustration purposes, Table 1 
shows the effects of s, recruitment model and timing of 
interim analysis on Vunif

s  and minimum and maximum 
values of Vunif

s  and also, as a means of comparison the 
equal spacing model where dr = 1+ (r − 1)/(s − 1) for 
all r = 1, . . . , s , which we denote by Ṽunif

s .
Table 1 and expressions (8), (9) and (10) show that vari-

ation in Vunif
s  , for some fixed s, is due solely to differences 

in ns1 , the ratio of the number of study participants with 
final outcome data to study participants with first early 
outcome data at time t. The value of ns1 depends on both 
the timing of the interim analysis and the recruitment 
model. As ns1 → 1 , when all participants have final out-
come data, then also Vunif

s → 1 and there is no additional 
information available from the early outcomes. This is 
apparent in the trend for larger values in Vunif

s  , for all 
settings, as we move from early to mid to late interim 
analyses and ns1 increases in value. As we increase the 
number of early outcomes for fixed α , with increasing s, 
then the term D = (1− α)(1+ (s − 1)α)/(1+ (s − 2)α) 
in expression (8) decreases in value towards a minimum 
of (1− α) as s → ∞ . Values of D in Table 1, for α = 0.5 , 

decrease with increasing s rapidly initially (e.g. from 
s = 2 to s = 3 ), but slower later (e.g. from s = 5 to s = 6 ). 
This suggests that there is little to be gained in increas-
ing information fraction by increasing s much beyond the 
values we use here.

Exponential correlation model
The correlation between the primary outcome at ds and 
the first outcome at d1 is given by γ ds−d1 , and the param-
eter γ can be set such that the known or expected cor-
relation between d1 and ds is ρ1s . Therefore, as a means 
to produce consistency between uniform and exponential 
correlation models we set γ = α1/(ds−d1) , where α is the 
reference correlation from the uniform model. As ds = 2 
for all s, then γ = α . Using these parametrisations for dr 
and γ , we note that by replacing γ in expression (15) by 
α , ds = 2 and d1 = 1 , results in max(Vunif

s ) = max(V
exp
s ).

Plots showing the difference in minimum and maxi-
mum values and the empirical distribution of Vexp

s  for 
equal group sizes ( φ = 0.5 ), with varying d2, . . . , ds−1 , 
for correlations in the range 0 ≤ γ < 1 and the decreas-
ing, fixed and increasing rate recruitment models are 
available in the supplementary files (see Additional 
file  1, Figs. S10 to S18). The pattern of differences 
between recruitment models and interim analyses 

Table 1  Minimum and maximum values of Vunifs  and values for the equal spacing model Ṽ
unif

s  , for α = 0.5 for early ( t1 ), mid ( t2 ) and 
late ( t3 ) interim analyses, where τ01 = 0.15 , τ02 = 0.30 and τ03 = 0.45 respectively, for s from two to six for the fixed, increasing and 
decreasing rate recruitment models. Also shown are values of D = (1− α)(1+ (s− 1)α)/(1+ (s− 2)α) and ns1 for each setting

Early (t1) Mid (t2) Late (t3)

s D ns1 Ṽ
unif

s
Vunifs

ns1 Ṽ
unif

s
Vunifs

ns1 Ṽ
unif

s
Vunifs

min - max min - max min - max

[a] Fixed

  2 0.75 0.55 - 0.89-0.89 0.71 - 0.93-0.93 0.78 - 0.95-0.95

  3 0.67 0.55 0.86 0.85-0.89 0.71 0.91 0.90-0.93 0.78 0.94 0.93-0.95

  4 0.62 0.55 0.85 0.83-0.89 0.71 0.90 0.89-0.93 0.78 0.93 0.92-0.95

  5 0.60 0.55 0.84 0.82-0.89 0.71 0.90 0.88-0.93 0.78 0.92 0.91-0.95

  6 0.58 0.55 0.83 0.81-0.89 0.71 0.89 0.88-0.93 0.78 0.92 0.91-0.95

[b] Increasing

  2 0.75 0.59 - 0.90-0.90 0.68 - 0.92-0.92 0.72 - 0.93-0.93

  3 0.67 0.59 0.88 0.86-0.90 0.68 0.90 0.89-0.92 0.72 0.92 0.91-0.93

  4 0.62 0.59 0.86 0.84-0.90 0.68 0.89 0.88-0.92 0.72 0.91 0.90-0.93

  5 0.60 0.59 0.85 0.83-0.90 0.68 0.89 0.87-0.92 0.72 0.90 0.89-0.93

  6 0.58 0.59 0.85 0.83-0.90 0.68 0.88 0.87-0.92 0.72 0.90 0.88-0.93

[c] Decreasing

  2 0.75 0.42 - 0.86-0.86 0.62 - 0.91-0.91 0.74 - 0.93-0.93

  3 0.67 0.42 0.82 0.81-0.86 0.62 0.88 0.87-0.91 0.74 0.92 0.91-0.93

  4 0.62 0.42 0.80 0.78-0.86 0.62 0.87 0.86-0.91 0.74 0.91 0.90-0.93

  5 0.60 0.42 0.79 0.77-0.86 0.62 0.86 0.85-0.91 0.74 0.91 0.89-0.93

  6 0.58 0.42 0.78 0.76-0.86 0.62 0.86 0.84-0.91 0.74 0.90 0.89-0.93
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are consistent across values of γ , with values for Vexp
s  

decreasing monotonically with increasing γ ; the larger 
the correlation, the greater the information available 
from the early outcomes. Therefore, as for the uniform 
model, we pick a typical value of γ = 0.5 to illustrate in 
Table 2 the effects of s, recruitment model and timing of 
interim analysis on Vexp

s .
Table  2 shows minimum and maximum values of 

V
exp
s  and also the equal spacing model. The values of 

Ṽ
exp

s  in Table  2 are always smaller than values of Ṽunif

s  
in Table  1. This is due to the settings we adopt here to 
force max(Vunif

s ) = max(V
exp
s ) , that make the correla-

tions in the exponential model stronger. For instance, 
for the model where s = 3 , the correlation between the 
early outcome at d2 and the final outcome at d3 is given 
by α in the uniform model and 

√
α (i.e. αd3−d2 = α2−1.5 ) 

in the exponential model. The observed decreases in Vexp
s  

as we move from s = 2 to s = 6 , across all settings, are 
of a similar magnitude to those observed for the uni-
form model, suggesting some gains in information with 
increasing numbers of early outcomes, but with those 
gains diminishing as s increases. Of particular note for 
the exponential model is that, for the selected correlation 
γ = 0.5 , Ṽexp

s  is quite close to min(V
exp
s ) , across recruit-

ment models and interim analyses. This suggests that for 

a moderate correlation, having equally spaced outcomes 
is very close to the best possible design setting. As corre-
lations become larger and γ approaches one, then clearly 
the spacing of the outcomes becomes unimportant. Con-
versely, as the correlation becomes smaller then the spac-
ing of the outcomes has a larger relative impact on Vexp

s  , 
for the recruitment models we explore here, and suggests 
that moving the early outcomes to be nearer to the final 
outcome provides more information.

START:REACTS clinical trial
The START:REACTS study was a double-blind, group-
sequential, randomised controlled trial for rotator cuff 
tendon (shoulder) tears comparing arthroscopic debride-
ment of the subacromial space with biceps tenotomy 
(control group) with the same procedure but including 
insertion of a sub-acromial spacer balloon (treatment 
group) [7, 27]. At the planning stage, individual partici-
pant data were simulated, for 10000 trials, and the mod-
els described in “Data model” section were fitted in order 
to estimate treatment effects, test statistics and informa-
tion for each simulated trial; details of simulations and 
the how they were implemented are reported in detail 
by Parsons et  al. [8]. The results of the simulations for 
START:REACTS showed that for 90% power, a minimum 

Table 2  Minimum and maximum values of Vexps  and values for the equal spacing model Ṽ
exp

s  , for γ = 0.5 for early ( t1 ), mid ( t2 ) and 
late ( t3 ) interim analyses, where τ01 = 0.15 , τ02 = 0.30 and τ03 = 0.45 respectively, for s from two to six for the fixed, increasing and 
decreasing rate recruitment models. Also shown are values of ns1 for each setting

Early (t1) Mid (t2) Late (t3)

s ns1 Ṽ
exp

s
V
exp
s

ns1 Ṽ
exp

s
V
exp
s

ns1 Ṽ
exp

s
V
exp
s

min - max min - max min - max

[a] Fixed

  2 0.55 - 0.89-0.89 0.71 - 0.93-0.93 0.78 - 0.95-0.95

  3 0.55 0.81 0.80-0.89 0.71 0.88 0.88-0.93 0.78 0.92 0.91-0.95

  4 0.55 0.78 0.78-0.89 0.71 0.87 0.86-0.93 0.78 0.90 0.90-0.95

  5 0.55 0.77 0.76-0.89 0.71 0.86 0.85-0.93 0.78 0.90 0.90-0.95

  6 0.55 0.76 0.75-0.89 0.71 0.85 0.85-0.93 0.78 0.89 0.89-0.95

[b] Increasing

  2 0.59 - 0.90-0.90 0.68 - 0.92-0.92 0.72 - 0.93-0.93

  3 0.59 0.83 0.83-0.90 0.68 0.87 0.87-0.92 0.72 0.89 0.89-0.93

  4 0.59 0.81 0.80-0.90 0.68 0.85 0.85-0.92 0.72 0.88 0.87-0.93

  5 0.59 0.80 0.79-0.90 0.68 0.84 0.84-0.92 0.72 0.87 0.87-0.93

  6 0.59 0.79 0.79-0.90 0.68 0.84 0.84-0.92 0.72 0.86 0.86-0.93

[c] Decreasing

  2 0.42 - 0.86-0.86 0.62 - 0.91-0.91 0.74 - 0.93-0.93

  3 0.42 0.75 0.73-0.86 0.62 0.84 0.84-0.91 0.74 0.89 0.89-0.93

  4 0.42 0.71 0.69-0.86 0.62 0.82 0.82-0.91 0.74 0.88 0.88-0.93

  5 0.42 0.69 0.68-0.86 0.62 0.81 0.80-0.91 0.74 0.87 0.87-0.93

  6 0.42 0.67 0.67-0.86 0.62 0.80 0.80-0.91 0.74 0.87 0.86-0.93



Page 12 of 17Parsons et al. BMC Medical Research Methodology           (2024) 24:42 

of N = 188 participants were required, with the expected 
number of participants providing outcome data and trial 
information at the interim analyses shown in Table 3[a]. 
The expected information at the study end was given 
by I = N/(4σ 2

s ) = 188/(4 × 144) = 0.326 . Table  3[b] 
shows the observed numbers of participants providing 
data and the information and the estimated test statis-
tic ( Z = βs/sd(βs) ) at the first interim analysis when the 
study was stopped for futility.

The observed correlations between outcomes were 
larger than expected at the first interim analysis when 
the trial was stopped; α ≈ 0.75 , not α = 0.5 as planned. 
Although the observed numbers of participants provid-
ing outcome data were reasonably similar to the expected 
numbers, this was more by chance than by design, as the 
number of recruiting sites used for the trial was actually 
24, not the planned 15, and the pattern of site initiations 
was quite different from the plan.

The expectation in the original study design was that 
the interim analyses should occur when approximately 
25% and 35% of the trial participants had final outcome 
data; that is when τ0(t1) = 0.25 and τ0(t2) = 0.35 . For 
the uniform correlation model, setting dr for r = 1, 2, 3 to 
reflect the spacing of the outcomes at 3, 6 and 12 months 
(e.g. we can set d1 = 1 , d2 = 2 and d3 = 4 ) and TR = 2d3 
(i.e. the recruitment period is 24 months and the final 
outcome is at 12 months) allows us to calculate Vunif

3 (t) 
at t = t1 and t = t2 . From expression (8), in “Recruitment 
models and var(βs)” section and setting α = 0.5 , these 
are as follows Vunif

3 (t1) = 0.808 and Vunif
3 (t2) = 0.836 for 

t1 = 6 (18 months) and t2 = 6.8 (20.4 months), the times 
when τ0(t1) = 0.25 and τ0(t2) = 0.35 , for the example 
formulations for dr . From expression (16), in “Informa-
tion” section, the information fractions at these interim 

analyses are τ(t1) = 0.309 and τ(t2) = 0.419 . The informa-
tion fractions allow us to calculate bounds and prob-
abilities (power), using for instance functions gsBound 
and gsProbability from the R package gsDesign 
[26], for selected values of the overall trial sample size 
N. Table  4[a] shows the expected numbers of partici-
pants providing data and the information and test sta-
tistic boundaries at the first and second interim analyses 
for the fixed recruitment model for N = 188 . Power 
for the fixed recruitment rate made is 90.6% for a treat-
ment difference of 6 and σ3 = 12 , the same as the actual 
START:REACTS trial.

We can repeat the above calculation quite simply 
for the decreasing rate recruitment model, recruiting 
over the same length of time at the same three time-
points (3, 6 and 12 months) and, for the same choice 
of covariance parameters, we get Vunif

3 (t1) = 0.786 
and Vunif

3 (t2) = 0.820 for t1 = 5.13 (15.4 months) and 
t2 = 5.64 (16.9 months) with information fractions at 
these interim analyses of τ (t1) = 0.318 and τ (t2) = 0.427 . 
Table  4[b] shows the expected numbers of participants 
providing data and the information and test statistic 
boundaries at the first and second interim analyses for 
the decreasing recruitment model for N = 188 . Power 
for the decreasing recruitment rate made is 90.7%.

The final trial reported a strong effect in favour of the 
control group -4· 2 (95% CI -8· 2 to -0·26), rather than 
the expected effect in favour of the treatment group 
[7]. If a result of this magnitude in favour of the control 
group had been anticipated, then we would have had 
the probabilities p1 and p2 of stopping for futility at the 
interim analyses shown in Fig.  2a and  b, as functions 
of α and the first analysis time-point t1 . At the extreme 
of the latter values shown at t1 = 4.5 (13.5 months) 

Table 3  START:REACTS study planning and observed trial data. Numbers of participants providing outcome data at 3, 6 and 12 
months, information ( I = 1/var(βs) ) and test statistic ( Z = βs/sd(βs) ) boundaries in [a] the expected (planned) study design based on 
extensive simulations and [b] observed in the trial itself. Note that the trial was stopped at the first interim analysis for futility, as the 
test statistic fell below the lower boundary

[a] Expected [b] Observed

 Outcome Interim End Interim End

1 2 1 2

12 months N3 50 70 188 47 - -

6 months N2 90 110 188 86 - -

3 months N1 120 140 188 112 - -

Information I 0.102 0.139 0.326 0.110 - -

Information fraction τ 0.311 0.426 1.000 - - -

Test statistic Z - - - -0.881 - -

Boundary lower -0.706 0.581 1.909 - - -

upper ∞ 3.090 1.909 - - -
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there would have been very little outcome data for the 
fixed rate model ( N3 = 11.8 ) and a consequent mod-
est value of p1 = 0.446 , with p2 = 0.525 ( N3 = 65.8 ), 
assuming no correlation α = 0 . Increasing the corre-
lation to α = 0.8 would provide a considerably larger 
first interim analysis futility stopping probabilities 
p1 = 0.581 . A later first interim analysis at 19.5 months 
( t1 = 6.5 ) would provide much more data ( N3 = 58.8 ) 
and a larger probability of stopping p1 = 0.716 for 
α = 0 ( p1 = 0.820 at α = 0.8).

Discussion
The numerical examples of “Numerical examples”  sec-
tion show how patterns of information accrual vary 
between correlation and recruitment models and pro-
vide some general guidance for planning a group sequen-
tial trial with early outcome data. Given equal numbers 
of participants providing early and final outcome data, 
the stronger the correlation between early and final out-
comes the greater the gain in information (reduction in 
variance) at some interim time-point t. Expressions (8) 

Table 4  Numbers of participants providing outcome data at 3, 6 and 12 months, information ( I = 1/var(βs) ) and test statistic 
( Z = βs/sd(βs) ) boundaries for putative START:REACTS trial designs where the sample size is N = 188 for [a] an expected fixed rate and 
[b] a decreasing rate of recruitment

[a] Fixed rate [b] Decreasing rate

 Outcome Interim End Interim End

1 2 1 2

12 months N3 47.0 65.8 188 47.0 65.8 188

6 months N2 94.0 112.8 188 113.5 127.0 188

3 months N1 117.5 136.3 188 138.9 149.8 188

Information I 0.101 0.137 0.326 0.104 0.139 0.326

Information fraction τ 0.309 0.419 1.000 0.318 0.427 1.000

Boundary lower -0.706 0.581 1.907 -0.706 0.581 1.910

upper ∞ 3.090 1.907 ∞ 3.090 1.910

Fig. 2  Contour plots showing futility stopping probabilities for a treatment difference of -4 (in favour of the control group) for the fixed rate 
recruitment and the uniform correlation model at (a) the first interim ( p1 ) and (b) the second interim analysis ( p2 ) as functions the correlation α 
and the timing of the first interim analysis ( t1 ; in 3 monthly base unit, such that for instance t1 = 5 corresponds to 15 months)
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and (14) show Vs(t) , the relative effect of the early out-
comes on reducing the variance of the primary outcome, 
for the uniform and exponential models to be monotoni-
cally increasing in the correlation parameters ( 0 ≤ α < 1 
and 0 ≤ γ < 1 ) under our model constraints. Therefore, 
if a number of suitable outcome measures are available 
then one should choose the one with the strongest cor-
relations between serial time-points, assuming that the 
measures are equally responsive to change and have simi-
lar variances. Making recommendations for the number 
and, particularly, the timing of early outcomes is more 
complex. The simulations (Tables  1 and 2) show that 
there was generally little change in Vs for s > 5 , suggest-
ing that for the models tested there was little to be gained 
by having more than four early outcome time-points. For 
the exponential model, equally spaced early outcomes, 
for known γ , proved to be a sensible, and often almost 
optimal, choice to give the greatest information gain (i.e. 
values of Ṽexp

s  are close to min(V
exp
s ) ). For smaller values 

of γ there was some value for the exponential model in 
moving the early outcomes to be nearer to the final out-
come. However, one might argue that such an approach 
is not sensible for such small values of γ as little would 
be gained in practice by waiting to collect early outcomes 
at such a late time-point. For the time invariant uni-
form correlation model, maximum information gains are 
made (trivially) when the early outcomes occur as early 
as possible, simply because more data will be available as 
more trial participants will been followed-up. Clearly, it 
is not sensible to assume that the uniform model must 
apply for any spacing between outcome time-points. 
Therefore, it is worth emphasising that the results pre-
sented in Tables  1 and 2 are strongly dependent on the 
model assumptions, in the sense that we have assumed 
that changing the timings of the early outcomes is pos-
sible for some fixed value of the correlation parameter. 
For instance, if there was known to be an equal correla-
tion of magnitude α between four equally-spaced out-
come time-points, then would this correlation model still 
be appropriate if the first two outcomes and the last two 
outcomes were moved to be almost coincident? It seems 
highly unlikely. This being the case, we would caution 
against using numerical experiments (such as those of 
“Uniform correlation model” and “Exponential correla-
tion model” sections) solely as a means to make decisions 
on the spacing of outcome time-points. However, we do 
believe that within reasonable limits it would be profit-
able to explore the likely information gains that alternate 
spacing models may offer. Although, such decisions may 
be dependent on the specific application area and other 
trial constraints such as when participant follow-up 
would routinely be available. One aspect of the numeri-
cal simulation studies that is clear is that the decreasing 

recruitment rate model is preferable, in terms of informa-
tion gain, to either the increasing or fixed rate models. 
This is due to a greater proportion of the study partici-
pants being available to provide early outcome data for 
the decreasing rate model. In many instances, there is lit-
tle one could do about the likely pattern of recruitment 
into a trial, but in settings where this was possible then 
clearly it would be advantageous to plan to recruit a large 
proportion of the target sample size into the trial as early 
as possible.

The STARTS:REACTS trial provided a real exam-
ple of a study using an information adaptive approach 
for a group sequential trial with early outcome data [7]. 
The study was originally planned based on a large study 
that simulated individual participant data [8]. What the 
results of “START:REACTS clinical trial” section show is 
that the trial could have been planned, with little effort 
and without the need for time-consuming coding and 
simulation, based on the models described here. If that 
had been done, then, as Tables  3 and 4 show, the final 
design would have been almost exactly equivalent to that 
used in the original study, at considerably less effort and 
cost. Additionally, a range of other options (e.g. changing 
the number and timing of interim analysis) could have 
been explored with none of the considerable extra work 
and effort that would have been required if we were simu-
lating outcomes for individual participants. An advantage 
of using the approaches to design outlined here, rather 
than simulation models, is that the procedures are abso-
lutely specified and explicit, and therefore easily checked 
and replicated by others. Whereas, in a simulation study 
much relies on the availability of the code and the reada-
bility and competence of the coding and also the assump-
tions made by those developing the code, that are often 
not explicitly stated. For these, and many other reasons, 
we would strongly recommend that those wishing to use 
the group sequential designs described here use the one 
of the selection of models in “Correlation models”  sec-
tion. Clearly, if one believes that the study setting is of a 
completely different type, or does not approximate to one 
of the settings described here then simulation may be the 
only option to determining appropriate trial sample sizes.

This study presents certain limitations. The choices 
of fixed, decreasing and increasing recruitment rate 
models (“Recruitment and follow-up models”  section) 
was essentially arbitrary and used mainly as a means of 
showing a range of contrasting options. The fixed rate 
model might represent for instance a situation where 
participants were identified and recruited into a study 
at a fixed rate across one or more recruitment centres. 
Whereas the increasing rate model might arise natu-
rally if the number of centres was likely to increase dur-
ing recruitment and each centre recruited at the same 
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fixed rate, resulting in an overall recruitment rate that 
followed the profile seen in Fig. 1b. The decreasing rate 
model Fig. (1c) provides the type of recruitment profile 
that might be observed where there is an existing pool 
of participants who are available to enter a trial quickly, 
resulting in a rapid rise that is followed by a slowing 
rate of accrual after the pool is exhausted and we have 
to rely solely on a new (incident) cases of a condition 
being identified. All of these scenarios are amongst the 
many we have observed within our own trials experi-
ence. Although we fully accept that the settings we pre-
sent may not cover every possible option that trialists 
using these methods may wish to consider. However, 
we believe it would be relatively easy to suggest and 
implement a range of other sensible models, provided 
they followed the general structures and properties we 
outline in “Recruitment and follow-up models”  sec-
tion. Similarly, although clearly it would be possible to 
consider more complex correlation models than those 
described in “Correlation models”  section, we chose 
the uniform and exponential correlation models mainly 
because they are very widely used for longitudinal out-
comes, are often good approximations to observed data 
and also because they lead to simple analytic expres-
sions for var(βs) , and as such allow us to illustrate some 
key ideas about the methodological approach described 
here [4, 22]. In practice, if we wished to assume that 
outcomes followed an exponential correlation model 
based on limited data, then we could reason as follows. 
For instance, consider a study that is being planned 
with four outcomes at 3, 6, 12 an 18 months, with the 
latter as the final (primary) outcome, and the others as 
early outcomes. Data from another study suggests that 
the correlation between outcomes at 3 and 12 months 
is approximately ρ3m,12m = 0.5 , and therefore by noting 
that γ = ρ

1/|dr−dr′ |
rr′  , we can write γ = 0.51/3 , by setting 

d1 = 1 , d2 = 2 , d3 = 4 and d4 = 6 to model the outcome 
spacings. In this model, ρ3m,6m = 0.79 , ρ3m,12m = 0.50 , 
ρ3m,18m = 0.31 , ρ6m,12m = 0.63 , ρ6m,18m = 0.40 and 
ρ12m,18m = 0.63 . The simple expressions for var(βs) for 
the exponential and uniform correlation models are 
due to the fact that general expressions are available for 
R−1
s  ; see Appendix A1 and A2. Therefore, if similar gen-

eral expressions were available for alternate correlation 
models, then in principle we believe it would be pos-
sible to provide analytic expressions for such models.

Currently, those who wish to exploit the methodol-
ogy reported here will need to implement the results 
themselves. However, work is ongoing to develop a 
package of R functions [23] to implement the models 
in a form that will make it easy for the user to explore 
all the design options described in a simple and inter-
active manner.

Conclusions
We have developed models for information accrual dur-
ing recruitment into a group sequential clinical trial 
using early outcomes to augment the information avail-
able from the trial primary outcome measures as a means 
to make decisions about whether to stop prior to the 
completion of recruitment [4, 8]. The analytic solutions 
provided in “Correlation models”  section are based on 
some simple, but we believe realistic and useful, models 
of recruitment into the study and the serial correlation 
between the early and final outcome measures reported 
during participant follow-up. Although in general the 
correlations may be unknown at the planning stage, we 
can speculate on the likely correlation structure. In an 
analogous way to what we might do for variances in a 
conventional trial. At some arbitrarily selected point 
during recruitment we will not (in general) know the 
exact number of participants recruited or the number 
of participants ( N0r and N1r ) with data at each follow-
up occasion r. However, we can speculate on the likely 
recruitment rates and therefore the likely number of 
participants providing follow-up data at any point dur-
ing the trial. Given the above we can predict how var(βs) , 
and therefore information, will vary during the study and 
use this to motivate the choice and timings of the interim 
analyses. The models provide analytic expressions for 
information accrual that can be routinely used at the 
planning stage of a putative trial, based on some modest 
assumptions about the likely number of outcomes and 
when they might occur and the expected recruitment 
patterns. Numerical simulations show that these models 
behave sensibly (i.e. in a manner that we would expect) 
and allow us to explore a range of design options in a way 
that would have been considerably more difficult and 
time-consuming if we had to use the previously described 
method of simulating individual trial participant data.
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Additional file 1: Figure S1. The feasible region of Vunif
s  for s = 2 

(shaded areas), bounded above by the maximum and below by the 
minimum, for correlations in the range 0 ≤ α < 1 and equal group sizes (φ 
= 0.5) for the decreasing, fixed and increasing rate recruitment models 
with lines for the setting where the time-points are given by dr = 1+(r−1)/
(s−1) (r = 1, 2) for [a] early (τ 01 = 0.15), [b] mid (τ 02 = 0.30) and [c] late (τ 
03 = 0.45) interim analyses. Figure S2. The feasible region of Vunif

s   for s 
= 3 (shaded areas), bounded above by the maximum and below by the 
minimum, for correlations in the range 0 ≤ α < 1 and equal group sizes (φ 
= 0.5) for the decreasing, fixed and increasing rate recruitment models 
with lines for the setting where the time-points are given by dr = 1+(r−1)/
(s−1) (r = 1, 2, 3; i.e. equal spacing) for [a] early (τ 01 = 0.15), [b] mid (τ 02 
= 0.30) and [c] late (τ 03 = 0.45) interim analyses. Figure S3. The empirical 
distribution (nsim = 10000) of Δ Vunif

s   , the difference from the median 
value of Vunif

s  , with varying 1 < dr < 2 (r = 2) for s = 3, with shading 
showing quantiles 0-5%, 5-25%, 25-50%, 50-75%, 75-95% and 95-100%, for 
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correlations in the range 0 ≤ α < 1 and equal group sizes (φ = 0.5) for 
[a] early (τ 01 = 0.15), [b] mid (τ 02 = 0.30) and [c] late (τ 03 = 0.45) 
interim analyses, for the (i) increasing, (ii) fixed and (iii) decreasing rate 
recruitment models. Figure S4. The feasible region of Vunif

s  for s = 4 
(shaded areas), bounded above by the maximum and below by the 
minimum, for correlations in the range 0 ≤ α < 1 and equal group 
sizes (φ = 0.5) for the decreasing, fixed and increasing rate recruitment 
models with lines for the setting where the time-points are given by 
dr = 1+(r−1)/(s−1) (r = 1, 2, 3, 4; i.e. equal spacing) for [a] early (τ 01 = 
0.15), [b] mid (τ 02 = 0.30) and [c] late (τ 03 = 0.45) interim analyses. 
Figure S5. The empirical distribution (nsim = 10000) of Δ  , the 
difference from the median value of Vunif

s  , with varying 1 < dr < 2 (r 
= 2, 3) for s = 4, with shading showing quantiles 0-5%, 5-25%, 25-50%, 
50-75%, 75-95% and 95-100%, for correlations in the range 0 ≤ α < 1 
and equal group sizes (φ = 0.5) for [a] early (τ 01 = 0.15), [b] mid (τ 02 
= 0.30) and [c] late (τ 03 = 0.45) interim analyses, for the (i) increasing, 
(ii) fixed and (iii) decreasing rate recruitment models. Figure S6. The 
feasible region of Vunif

s  for s = 5 (shaded areas), bounded above by 
the maximum and below by the minimum, for correlations in the 
range 0 ≤ α < 1 and equal group sizes (φ = 0.5) for the decreasing, 
fixed and increasing rate recruitment models with lines for the setting 
where the time-points are given by dr = 1+(r−1)/(s−1) (r = 1, 2, 3, 4, 5; 
i.e. equal spacing) for [a] early (τ 01 = 0.15), [b] mid (τ 02 = 0.30) and 
[c] late (τ 03 = 0.45) interim analyses.Figure S7. The empirical 
distribution (nsim = 10000) of Δ Vunif

s  , the difference from the 
median value of Vunif

s  , with varying 1 < dr < 2 (r = 2, 3, 4) for s = 5, 
with shading showing quantiles 0-5%, 5-25%, 25-50%, 50-75%, 
75-95% and 95-100%, for correlations in the range 0 ≤ α < 1 and equal 
group sizes (φ = 0.5) for [a] early (τ 01 = 0.15), [b] mid (τ 02 = 0.30) and 
[c] late (τ 03 = 0.45) interim analyses, for the (i) increasing, (ii) fixed and 
(iii) decreasing rate recruitment models. Figure S8. The feasible region 
of Vunif

s  for s = 6 (shaded areas), bounded above by the maximum 
and below by the minimum, for correlations in the range 0 ≤ α < 1 
and equal group sizes (φ = 0.5) for the decreasing, fixed and 
increasing rate recruitment models with lines for the setting where 
the time-points are given by dr = 1+(r−1)/(s−1) (r = 1, 2, 3, 4, 5, 6; i.e. 
equal spacing) for [a] early (τ 01 = 0.15), [b] mid (τ 02 = 0.30) and [c] 
late (τ 03 = 0.45) interim analyses. Figure S9. The empirical 
distribution (nsim = 10000) of Δ Vunif

s   , the difference from the 
median value of Vunif

s  , with varying 1 < dr < 2 (r = 2, 3, 4, 5) for s = 6, 
with shading showing quantiles 0-5%, 5-25%, 25-50%, 50-75%, 
75-95% and 95-100%, for correlations in the range 0 ≤ α < 1 and equal 
group sizes (φ = 0.5) for [a] early (τ 01 = 0.15), [b] mid (τ 02 = 0.30) and 
[c] late (τ 03 = 0.45) interim analyses, for the (i) increasing, (ii) fixed and 
(iii) decreasing rate recruitment models.Figure S10. The feasible 
region of Vexp s for s = 2 (shaded areas), bounded above by the 
maximum and below by the minimum, for correlations in the range 0 
≤ γ < 1 and equal group sizes (φ = 0.5) for the decreasing, fixed and 
increasing rate recruitment models with lines for the setting where 
the time-points are given by dr = 1+(r−1)/(s−1) (r = 1, 2) for [a] early 
(τ 01= 0.15), [b] mid (τ 02 = 0.30) and [c] late (τ 03 = 0.45) interim 
analyses. Figure S11. The feasible region of Vexp s for s = 3 (shaded 
areas), bounded above by the maximum and below by the minimum, 
for correlations in the range 0 ≤ γ < 1 and equal group sizes (φ = 0.5) 
for the decreasing, fixed and increasing rate recruitment models with 
lines for the setting where the time-points are given by dr = 1+(r−1)/
(s−1) (r = 1, 2, 3; i.e. equal spacing) for [a] early (τ 01 = 0.15), [b] mid (τ 
02 = 0.30) and [c] late (τ 03 = 0.45) interim analyses. Figure S12. The 
empirical distribution (nsim = 10000) of ΔVexp s , the difference from 
the median value of Vexp s , with varying 1 < dr < 2 (r = 2) for s = 3, 
with shading showing quantiles 0-5%, 5-25%, 25-50%, 50-75%, 
75-95% and 95-100%, for correlations in the range 0 ≤ γ < 1 and equal 
group sizes (φ = 0.5) for [a] early (τ 01 = 0.15), [b] mid (τ 02 = 0.30) and 
[c] late (τ 03 = 0.45) interim analyses, for the (i) increasing, (ii) fixed and 
(iii) decreasing rate recruitment models. Figure S13. The feasible 
region of Vexp s for s = 4 (shaded areas), bounded above by the 
maximum and below by the minimum, for correlations in the range 0 
≤ γ < 1 and equal group sizes (φ = 0.5) for the decreasing, fixed and 
increasing rate recruitment models with lines for the setting where 

the time-points are given by dr = 1+(r−1)/(s−1) (r = 1, 2, 3, 4; i.e. equal 
spacing) for [a] early (τ 01 = 0.15), [b] mid (τ 02 = 0.30) and [c] late (τ 03 = 
0.45) interim analyses. Figure S14. The empirical distribution (nsim = 
10000) of ΔVexp s , the difference from the median value of Vexp s , with 
varying 1 < dr < 2 (r = 2, 3) for s = 4, with shading showing quantiles 
0-5%, 5-25%, 25-50%, 50-75%, 75-95% and 95-100%, for correlations in the 
range 0 ≤ γ < 1 and equal group sizes (φ = 0.5) for [a] early (τ 01 = 0.15), 
[b] mid (τ 02 = 0.30) and [c] late (τ 03 = 0.45) interim analyses, for the (i) 
increasing, (ii) fixed and (iii) decreasing rate recruitment models. Figure 
S15. The feasible region of Vexp s for s = 5 (shaded areas), bounded above 
by the maximum and below by the minimum, for correlations in the 
range 0 ≤ γ < 1 and equal group sizes (φ = 0.5) for the decreasing, fixed 
and increasing rate recruitment models with lines for the setting where 
the time-points are given by dr = 1+(r−1)/(s−1) (r = 1, 2, 3, 4, 5; i.e. equal 
spacing) for [a] early (τ 01 = 0.15), [b] mid (τ 02 = 0.30) and [c] late (τ 03 = 
0.45) interim analyses. Figure S16. The empirical distribution (nsim = 
10000) of ΔVexp s , the difference from the median value of Vexp s , with 
varying 1 < dr < 2 (r = 2, 3, 4) for s = 5, with shading showing quantiles 
0-5%, 5-25%, 25-50%, 50-75%, 75-95% and 95-100%, for correlations in the 
range 0 ≤ γ < 1 and equal group sizes (φ = 0.5) for [a] early (τ 01 = 0.15), 
[b] mid (τ 02 = 0.30) and [c] late (τ 03 = 0.45) interim analyses, for the (i) 
increasing, (ii) fixed and (iii) decreasing rate recruitment models. Figure 
S17. The feasible region of Vexps for s = 6 (shaded areas), bounded above 
by the maximum and below by the minimum, for correlations in the 
range 0 ≤ γ < 1 and equal group sizes (φ = 0.5) for the decreasing, fixed 
and increasing rate recruitment models with lines for the setting where 
the time-points are given by dr = 1+(r−1)/(s−1) (r = 1, 2, 3, 4, 5, 6; i.e. 
equal spacing) for [a] early (τ 01 = 0.15), [b] mid (τ 02 = 0.30) and [c] late (τ 
03 = 0.45) interim analyses. Figure S18. The empirical distribution (nsim = 
10000) of ΔVexp s , the difference from the median value of Vexp s , with 
varying 1 < dr < 2 (r = 2, 3, 4, 5) for s = 6, with shading showing quantiles 
0-5%, 5-25%, 25-50%, 50-75%, 75-95% and 95-100%, for correlations in the 
range 0 ≤ γ < 1 and equal group sizes (φ = 0.5) for [a] early (τ 01 = 0.15), 
[b] mid (τ 02 = 0.30) and [c] late (τ 03 = 0.45) interim analyses, for the (i) 
increasing, (ii) fixed and (iii) decreasing rate recruitment models.

Additional file 1: Appendix A. A.1 Uniform correlation model. A.2 Expo-
nential correlation model. A.3 Partial derivatives of Vexps. A.4 Recruitment 
and follow-up models. Table A1 Times (t1, t2 and t3) for early τ0(t1) = 0.15, 
mid τ0(t2) = 0.30 and late τ0(t3) = 0.45 interim analyses, for increasing, 
fixed and decreasing rate recruitment models.
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