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Abstract 

Background  In clinical trials and epidemiological research, mixed-effects models are commonly used to exam-
ine population-level and subject-specific trajectories of biomarkers over time. Despite their increasing popularity 
and application, the specification of these models necessitates a great deal of care when analysing longitudinal data 
with non-linear patterns and asymmetry. Parametric (linear) mixed-effect models may not capture these complexities 
flexibly and adequately. Additionally, assuming a Gaussian distribution for random effects and/or model errors may be 
overly restrictive, as it lacks robustness against deviations from symmetry.

Methods  This paper presents a semiparametric mixed-effects model with flexible distributions for complex longi-
tudinal data in the Bayesian paradigm. The non-linear time effect on the longitudinal response was modelled using 
a spline approach. The multivariate skew-t distribution, which is a more flexible distribution, is utilized to relax the nor-
mality assumptions associated with both random-effects and model errors.

Results  To assess the effectiveness of the proposed methods in various model settings, simulation studies were 
conducted. We then applied these models on chronic kidney disease (CKD) data and assessed the relationship 
between covariates and estimated glomerular filtration rate (eGFR). First, we compared the proposed semipara-
metric partially linear mixed-effect (SPPLM) model with the fully parametric one (FPLM), and the results indicated 
that the SPPLM model outperformed the FPLM model. We then further compared four different SPPLM models, 
each assuming different distributions for the random effects and model errors. The model with a skew-t distribution 
exhibited a superior fit to the CKD data compared to the Gaussian model. The findings from the application revealed 
that hypertension, diabetes, and follow-up time had a substantial association with kidney function, specifically lead-
ing to a decrease in GFR estimates.

Conclusions  The application and simulation studies have demonstrated that our work has made a significant con-
tribution towards a more robust and adaptable methodology for modeling intricate longitudinal data. We achieved 
this by proposing a semiparametric Bayesian modeling approach with a spline smoothing function and a skew-t 
distribution.
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Introduction
Longitudinal data are present in numerous clinical and 
other follow-up studies that involve monitoring sub-
jects over time to understand the impact of exposures, 
processes, or characteristics on outcomes. These studies 
involve tracking a group of subjects and recording data 
at different time points throughout the study duration. 
For example, one or more renal functional progress bio-
markers (e.g., serum creatinine, albuminuria, glomerular 
filtration rate, and other biomarkers) of a chronic kidney 
disease (CKD) patient can be measured repeatedly until 
end-stage renal disease and/or other events of interest 
occur.

This research was driven by longitudinal data on CKD, 
a significant global health issue that affects approximately 
500 million individuals worldwide [1]. Around 80 percent 
of these CKD cases are found in low- and middle-income 
countries. A prevalence of approximately 35.52 percent 
of CKD was observed among people with diabetes in 
Ethiopia [2]. To comprehend how CKD progresses within 
individuals and across populations, as well as to assess 
the impact of treatments over time, conducting longitu-
dinal data analysis is necessary.

Longitudinal data can show a variety of features over 
time and across subjects in many real-world situations 
during follow-up studies. A suitable choice of methods 
for analysing such complex longitudinal data is there-
fore sought. The most popular method proposed is the 
linear mixed-effects (LME) model [3–6] with a Gauss-
ian response. The generalized linear mixed-effects mod-
els [7–9] and non-linear mixed-effects models [10] have 
been also used as an extension of LME model.

Despite the increasing popularity of LME models in 
applications, the specification and statistical inference of 
these models may necessitate much attention when treat-
ing and analysing longitudinal data with many features. 
One of these features is that longitudinal data can exhibit 
nonlinear, irregular patterns over time, along with asym-
metry. Thus, to model and analyse longitudinal data with 
this feature, LME (fully parametric) models may not be 
flexible enough.

Another feature is that, unlike linear models, mixed 
models make assumptions regarding the distribution 
of model errors as well as random-effects. In the litera-
ture, it is usually assumed that the model errors and/or 
random-effects follow a multivariate normal distribution. 
In practice, longitudinal data might exhibit asymmet-
ric distributions, leading to biased statistical results [11, 
12]. Because of this, employing a normal distribution for 
model errors may lack robustness against deviations from 
normality and may be too limited to accurately describe 
the among- and within-subject variability of longitu-
dinal outcomes [13]. Many previous studies suggest 

considering a more flexible distribution for model errors 
to make a valid statistical inference [13, 14]. There are 
different suggestions in the literature concerning the 
impact of misspecification of a random-effect distribu-
tion on parameter estimation and inference. For instance, 
Molenberghs and Verbeke [15] suggest that misspecifica-
tion of the random-effects distribution can lead to biased 
parameter estimates in nonlinear and generalised linear 
mixed models; in linear mixed models, however, devia-
tions from the normality assumption may have very little 
impact on parameter estimation. McCulloch and Neu-
haus [16] considered a generalised linear mixed model 
using a maximum likelihood estimation technique to 
evaluate the misspecification of the distribution of a ran-
dom effect. Their findings demonstrated the robustness 
of most aspects of statistical inferences to the normality 
of random effects. Other authors in the recent literature, 
however, suggest that future research should accept more 
flexible distributional assumption for random-effects in 
addition to model errors [17, 18]. As a result, skew distri-
butions have recently been used in the literature to han-
dle asymmetry and model longitudinal data more flexibly 
[18–20].

Thus, in this study, we propose a flexible Bayesian 
mixed-effects model in a semiparametric setting with a 
smoothing spline specification and skew distributions for 
longitudinal data with the aforementioned features. To 
assess the effectiveness of the proposed methods in vari-
ous model specifications, simulation studies were con-
ducted. Finally, the proposed model was applied to data 
on CKD.

Methods
Motivating CKD data and longitudinal outcome 
trajectories
This paper utilizes a dataset spanning eight years, from 
June 2014 to June 2022, in the context of chronic kidney 
disease (CKD). The CKD data was gathered from the 
University of Gondar Comprehensive Specialized Hospi-
tal in Ethiopia, primarily extracted from patients’ profiles 
(or charts) and medical records. Only patients with three 
or more follow-ups are included in the analysis. The data-
set encompasses repeatedly recorded renal function bio-
markers, comorbidities, and baseline characteristics of 
198 CKD patients. On average, the patients were approx-
imately 55 years old, with 56.6% being male. Around 
one-third (34.4%) of the CKD patients in the study popu-
lation had baseline hypertension. Furthermore, the base-
line prevalence of diabetes among the CKD patients was 
determined to be 23.81%.

The estimated glomerular filtration rate (eGFR), which 
estimates the rate at which the kidneys filter blood, is 
utilized as a longitudinal response variable. Thus, the 
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analysis of this study considered 1,425 eGFR measure-
ments from 189 patients. The minimum, maximum and 
average number of measurements per patient were 3, 
18 and 8, respectively. 63.5% (120) patients had six and 
above number of measurements, and out of them 43% 
patients had ten and above measurements. Of the total 
1,425  measurements, based on the National Kidney 
Foundation guidelines [21], 39.7% indicated CKD Stage 
3 (moderate kidney disease), 32.9% indicated Stage 4 
(severe kidney disease), and 14.6% indicated Stage 5 
(end-stage renal disease). To accurately represent the 
diverse patterns of renal function progression and cre-
ate an appropriate model, the analysis includes patients 
with an eGFR value below ninety. Figure  1 displays the 
eGFR profiles of patients with CKD. The figure depicts 
the presence of non-linear trajectories and a positively 
skewed distribution of eGFR over time.

Bayesian modelling
The semiparametric mixed‑effects longitudinal outcome 
model
In this paper, the longitudinal variable is denoted as 
yij , which represents the value of the response eGFR 
for subject i at the jth time point tij . The indices i and 
j range from 1 to m and 1 to mi respectively, indicating 
the total number of subjects and the number of meas-
urements for each subject. Let xij = (x1ij , . . . , xpij)

T 
denotes a 1× p vector of associated p covariates. Most 
previous studies on chronic kidney disease have taken 
a parametric approach, like utilizing linear mixed-
effects models, to model the longitudinal response 
variable yij and the associated covariates xij . However, 

as demonstrated in the presentation of the motivating 
CKD data above, the outcome eGFR exhibits irregu-
lar (non-linear) trajectories over time. Therefore, this 
paper introduces a semiparametric mixed-effects 
model that considers the non-linear trajectories of yi by 
employing a spline approach.

where yi = (yi1, . . . , yimi)
T represent the vector of longi-

tudinal response variable, X i = (x1i, . . . , xpi)
T denote the 

design matrix of fixed-effects, and H i = (h1i, . . . ,hqi)
T 

represent the design matrix of random-effects. β and ξ i 
represent parameter vectors that are associated with 
the covariates of fixed and random effects. In Eq.  (1), 
the effect of measurement time t i = (ti1, . . . , timi)

T on 
the response yi is modelled using a non-parametric 
approach. This is achieved by employing a smoothing 
function N i(t i) , which can be defined as follows:

where U(ti) and Vi(ti) represent unknown smoothing 
functions for the population and subject-specific varia-
tions of the longitudinal response yi due to time effects 
ti , respectively. The random vectors ξ i , Vi(ti), and εi are 
assumed to be independent one another.

A regression spline method is utilized to specify the 
unknown functions U(ti) and Vi(ti)  in Eq.  (2), and 
can be defined as a linear combination of spline basis 
functions,
�ki(ti) = (�k(tij), . . . ,�k(timi))

T 
and �li(ti) = (�l(tij), . . . ,�l(timi))

T  . Where.

(1)yi = X iβ + N i(t i)+H iξ i + εi, i = 1, . . . ,m,

(2)Ni(ti) = f (U(ti),Vi(ti)) = U(ti)+ Vi(ti),

Fig. 1  The trajectories and distribution of the outcome eGFR: (a) the line-plots of eGFR over time for some randomly selected patients, indicating 
non-linear patterns in the trajectories of eGFR; and (b) the histogram with density for all the patients, indicating that eGFR has a distribution 
that is skewed towards the left
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�k

(
tij
)
= (φ0(tij),φ1(tij) . . . ,φk−1(tij))

T  and.
�l tij = (�0(tij), �1(tij) . . . , �l−1(tij))

T ; j = 1, . . . ,mi. 
Mathematically, the specification can be given by

where ηk = (η0,η1, . . . ,ηk−1)
T and ϑ il = (ϑi0,ϑi1, . . . ,ϑi(l−1))

T  
are k × 1 and l × 1 parameter vectors of the fixed-effect 
spline basis �k(ti) and random spline basis effects�l(ti) , 
respectively. The B-spline, truncated power or natural 
cubic spline basis can be used to construct the bases 
( �k(ti) and�l(ti) ) in (3). In this study, natural cubic 
spline with percentile-based knots is considered to 
approximate the bases. By using Eq.  (3), model (1) can 
be rewritten as:

Let Zi = (X i,�k(ti)) and Ri = (H i,�l(ti)) be the 
fixed-effect (population) and random effects design 
matrices, respectively. Furthermore, let α = (βT

p , η
T
k )

T 
and ϕi = (ξTiq ,ϑ

T
il )

T be the associated parameter vectors. 
Then, model (1) can be reformulated as

Most previous studies assumed a Gaussian distri-
bution for the random-effects ϕi (representing inter-
subject variation of yi ) as well as for the model errors 
ǫi (representing within-subject variation) due to its 
computational convenience. However, in this study, 
we considered multivariate skew-t distributions [22] 
for both ϕi and εi . That is, ϕi ∼ STq+l,ρϕ

(
0,�ϕ , δϕ

)
 and 

εi ∼ STmi ,ρε

(
0, σ 2

ε Imi , δεImi

)
 . Where ST (.) is a skew-

t distribution; ρϕ and ρε denote degrees of freedom; �ϕ 
and �ε = σ 2

ε Imi  denote covariance matrices; and  δϕ and 
δε = δεImi are skewness vectors of the random-effects ϕi 
and model errors εi , respectively.

(3)
U(ti) ≈

k−1∑

k=0

�k(t i)
Tηk = �k(ti)ηk

Vi(ti) ≈
l−1∑

l=0

�l(t i)
Tϑil = �l(ti)ϑ il

(4)yi = X iβ +�k (ti)ηk +H iξ i +�l(ti)ϑ il + εi , i = 1, . . . ,m

(5)

yi = Ziα + Riϕi + εi, i = 1, . . . ,m
ϕi ∼ STq+l,ρϕ

(
0,�ϕ , δϕ

)

εi ∼ STmi ,ρε

(
0, σ 2

ε Imi , δεImi

)

Hierarchical reformulation of the model
The statistical inference from a semiparametric mixed-
effects model with multivariate skew-t distributions 
using the likelihood approach can be computation-
ally demanding. Hence, to overcome this challenge, we 
adopted the Bayesian approach, which offers compu-
tational efficiency. This approach not only reduces the 
computational load but also allows for more accurate 
parameter estimation by leveraging existing information 
(prior knowledge) for parameter estimation. By employ-
ing Markov Chain Monte Carlo (MCMC) algorithms, the 
Bayesian approach enables us to estimate the parameters 
more efficiently while obtaining posterior distributions 
that provide a comprehensive quantification of parameter 
uncertainty.

In order to carry out the MCMC, it is crucial to refor-
mulate the model (5) by rep-resenting the skew-t distri-
butions using the stochastic representation considered 
by [22] (See Appendix B). To achieve this, we intro-
duced random vectors W ϕi = (Wϕi1, . . . ,Wϕi(q+1))

T and 
W εi = (Wεi1, . . . ,Wεimi)

T , as well as random variables 
vϕ and vε to represent the skew-t distributions associated 
with the random effects ϕi and model errors εi , respec-
tively. Consequently, we present the hierarchical refor-
mulation of model (5) as follows:

Where Nb() , in general, stands for a multivariate nor-
mal distribution with a dimension of b, and Ŵ() denotes a 
gamma distribution.

Prior specification and the posterior distribution
Let � =

{
α, σ 2

ε ,�ϕ , δϕ , δǫ , ρϕ , ρε
}
 represent the set of all 

parameters in the hierarchical model (6). We specify the 
prior distributions for each parameter in � as follows:

•	 The fixed-effects and skewness parameters α , δϕ , and 
δǫ are assumed to follow independent normal prior 
distributions Np(α0,�α) , Nq+l(0, κδϕ ) , and N (0, κδε ) , 
respectively.

•	 The scale parameters �ϕ and σ 2
ε  follow an inverse-

Wishart and inverse-Gamma prior distributions, 
IW q+l(Dϕ , νϕ) and IG(̺ε1, ̺ε2), respectively.

(6)

yi|ϕi,Wεi, vεi;α, σ
2
ε ,�ϕ , δε , ρε ∼ Nmi

(
Ziα + Riϕi + δεWεi, v

−1
εi σ

2
ε 1mi

)
,

ϕi|Wϕi, vϕi,�ϕ , δϕ , ρϕ ∼ Nq+l

(
δϕWϕi, v

−1
ϕi �ϕ

)
,

Wϕi|vϕi ∼ Nq+l

(
0, v−1

ϕi Iq+l

)
I
(
Wϕi > 0

)
,

Wεi|vεi ∼ Nmi

(
0, v−1

εi Imi

)
I(Wεi > 0),

vεi
∣∣ρǫ ∼ Ŵ(ρε/2, ρε/2), vϕi

∣∣ρϕ ∼ Ŵ
(
ρϕ/2, ρϕ/2

)



Page 5 of 11Ferede et al. BMC Medical Research Methodology           (2024) 24:56 	

•	 The degrees of freedom parameters ρϕ and ρε are 
assumed to follow truncated exponential prior distri-
butions, Exp(ρϑ0)I(ρϑ > 3) and Exp(ρε0)I(ρε > 3) , 
respectively.

The hyperparameter matrices �α and Dϕ are assumed 
diagonal for convenient implementation. Then, the prior 
distribution of all the parameters, denoted as π(�) , can 
be defined as the product of the individual prior distribu-
tions of each parameter.

Suppose G =
{
yi,Zi,Wϕi ,Wεi , vϕ , vε

}
 be the observed 

data. An approximation of the posterior density of Ω 
given G can be obtained as follows:

where f (G|�) is the joint likelihood function of G given 
Ω and µy = Ziα + Riϕi + δεWεi.

The Metropolis–Hastings algorithm within Gibbs 
sampler can be used to draw samples from the full con-
ditional posterior distributions of the parameters and 
to estimate their posterior means and standard devia-
tions. For all models, the Markov chain Monte Carlo 
(MCMC) procedure was implemented using Win-
BUGS14 software, which simplifies the implementa-
tion of the MCMC algorithm by eliminating the need 
to derive full conditionals and specify the algorithm 
explicitly.

Model comparison and diagnostics checking
The specification and implementation of the proposed 
model in the Bayesian approach may require to conduct 
convergence diagnostic checks and thoroughly exam-
ine the distributional assumptions before drawing any 
statistical inferences about the parameters. Failure to 

(7)

π(�|G) ∝ f (G|�)× π(�)

∝
m∏
i=1

∫
ϕi

{
(
σ 2
ǫ

)−mi
2 exp

(
− 1

2

(
yi − µy

)T
(

σ 2
ǫ Imi
vǫi

)−1(
yi − µy

)
)}

×
∣∣�ϕ

∣∣− 1
2 exp

(
− 1

2

(
ϕi − δϕWϕ

)T
vϕi�

−1
ϕ

(
ϕi − δϕWϕi

))

×exp
(
− 1

2vϕiW
T
ϕiWϕi

)
× exp

(
− 1

2vǫiW
T
ǫiWǫi

)

{
1

Ŵ(ρϕ/2)(ρϕ/2)
ρϕ/2

v
ρϕ
2 −1

ϕi

}
exp

(
− 2

ρϕ
vϕi

)

{
1

Ŵ(ρǫ/2)(ρǫ/2)
ρǫ/2

v
ρǫ
2
ǫi − 1

}
exp

(
− 2

ρǫ
vǫi

)}
dϕi

×exp
(
− 1

2 (α − α0)
T�−1

α (α − α0)

)

×
(
σ 2
ǫ

)−̺ǫ1−1
exp

(
−̺ǫ2/σ

2
ǫ

)

×
∣∣�ϕ

∣∣−
(νϕ+q+l+1)

2 exp
(
− 1

2 tr
(
Dϕ�

−1
ϕ

))

×exp
(
− 1

2δ
T
ϕ

∣∣κδϕ
∣∣−1

δϕ

)
× exp

(
− 1

2κδǫ
δ2ǫ

)

×exp
(
−ρϕρϕ

)
× exp(−ρǫ0ρǫ)

do so may result in biased estimates and invalid sta-
tistical inference. Thus, in this study, the Brooks-Gel-
man-Rubin (BGR) plot [23], trace plot, ACF plot and 
the Geweke’s test of convergence are all used to evalu-
ate convergence. After confirming convergence, we 
proceed to evaluate the effectiveness of the proposed 
semiparametric mixed-effects model (5) by explor-
ing various distributional assumptions for the ran-
dom-effects and model errors. This model comparison 
involves considering different distributional specifica-
tions and examining their performance in capturing the 
underlying characteristics of the data. These specifica-
tions are given below:

MoSTST: A semiparametric partially linear mixed-
effects model (SPPLMEM) with multivariate skew-t  
(ST) distributions for both the random- effects ϕi 
and model errors εi.
MoNST: An SPPLMEM with multivariate normal (N) 
distribution of ϕi and ST-distribution of εi.
MoSNSN: An SPPLMEM with both ϕi and εi follow 
multivariate skew-normal (SN) distributions.
MoNN: An SPPLMEM with multivariate normal (N) 
distributions of ϕi and εi . MoNN model is the stand-
ard choice in longitudinal data analysis.

In order to evaluate the performance of the estimators 
and make comparisons between different models, we uti-
lised several statistical measures. Additionally, to com-
pare and select the best-fitting Bayesian model for the 
skewed longitudinal response, we employed the deviance 
information criterion, which takes into account both the 
goodness of fit and model complexity.
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Deviance information criterion (DIC)
In this paper, DIC [24] is used to choose the best-fitting 
Bayesian semiparametric mixed-effects model. DIC is 
the most popular Bayesian model comparison tool in 
the literature: the smaller this value, the better the model 
fit. The DIC for the hierarchical Bayesian model (6) with 
parameters vector Ω and observed longitudinal data D 
can be defined as

where

is the deviance computed at the posterior mean of model 
parameters. And

is effective number of parameters. Where 
−

Dev(�) repre-
sents the expected deviance; Dev(�) = −2log(f (D|�)) is 
the deviance function; and f (D|�) is the likelihood of the 
parameters in Eq. (6).

Results
Simulation studies
Simulation studies were conducted to assess and com-
pare the effectiveness of the proposed semiparametric 
mixed-effects model in various model settings. In these 
simulations, a sample of 400 individuals was considered, 
each having eleven equally spaced measurement times, 
resulting in a total of 4,400 observations. The longitudi-
nal data was simulated using the semiparametric mixed-
effects model (5). The specifications of this general model 
can be given as follows:

where yij and Zpij are the longitudinal response and 
binary covariates, p = 1, 2 . α = (α1,α2,α3)

T and  
� = (�1, �2, �3)

T denote parameter vectors of the fixed 
effects and ϕi = ( ϕi1 , ϕi2 , ϕi3 , ϕi4)T denote parameter vec-
tor of the random-effects. �

(
tij
)
= ( φ1

(
tij
)
 , φ2

(
tij
)
,φ3

(
tij
)

)T is a vector of natural cubic spline bases used in the 
regression spline method. We used eleven equally spaced 
time points (tij = 0, 1, 2, 3, …, 10) with percentile based 
knots to generate the spline bases [14, 25, 26].

To create longitudinal data with a skewed distribution, 
the components of the random effects ϕi and the error 
terms εi are simulated from a gamma distribution γ (2, 1) . 
These generated values are then subtracted by two [27, 

(8)DIC = Dev
(
�
)
+ 2PD

(9)Dev
(
�
)
= Dev(E(�|D))

(10)PD = Dev(�)− Dev
(
�
)

(11)
yij = α1 + α2 ∗ Z1ij + α3 ∗ Z2ij + ϕi1 + (�1 + ϕi2) ∗ φ1

(
tij
)

+(�2 + ϕi3) ∗ φ2
(
tij
)
+ (�3 + ϕi4) ∗ φ3

(
tij
)
+ εij

28]. The vectors α = (27.5, − 5, − 4)T and λ = (− 9, − 25, − 5) 
are set accordingly.

Furthermore, Z1 and Z2 are generated using Bernoulli 
distributions with probabilities (proportions) 0.24 and 
0.44, respectively.

While performing the Bayesian inference, we consid-
ered weakly informative priors for the parameters. Spe-
cifically, each component of α, �, δϕ , and δε was assumed 
to follow a normal prior distribution, N (0, 100). Fur-
thermore, inverse Wishart IW (0.01I4, 4) , inverse gamma 
IG(0.01, 0.01), Exp(0.5), and Exp(0.5) priors are consid-
ered for �ϕ , σ 2

ε  , ρϕ , and ρε , respectively.
Three MCMC chains were run using R2WinBUGS 

in R. Each chain consisted of 90,000 iterations, and a 
burn-in of 45,000 iterations was applied. After thinning, 
we retained a total of 4,500 posterior estimates for each 
parameter from each model.

In assessing convergence, Figure A.1 (Appendix A) 
displays the trace plots, while Figure A.2 (Appendix A) 
exhibits the plots of ACF (autocorrelation function) and 
BGR diagnostic plots of the parameters derived from 
the proposed semiparameteric mixed-effects model [5). 
These figures clearly demonstrate convergence. In addi-
tion, none of the absolute values of Geweke’s test statis-
tics results (Appendix A) for the parameters exceeded the 
95% critical value of 1.96, demonstrating strong evidence 
of convergence.

We computed the relative bias (RB), which indicates 
the extent of bias in the estimators; the 95% coverage 
probability (CP) to assess the accuracy of credible inter-
vals; and the root-mean-square (RMS) error to measure 
the overall prediction accuracy. The results presented in 
Table 1 provide an evaluation of different models in terms 
of their posterior mean estimates, along with RB, RMSE, 
CP, and DIC based on simulation studies. Specifically, 
the evaluation focuses on semiparametric mixed-effect 
models (SPMEMs) with skew distributions in compari-
son to a Gaussian SPME model for skewed longitudinal 
data. The findings indicate that the proposed Bayesian 
SPMEMs with skew distributions (MoSTST, MoNST, and 
MoSNSN) outperformed the Gaussian model (MoNN). 
The DIC values of the skewed models MoNST, MoSNSN, 
and MoSTST are comparatively smaller (11,674, 12,997, 
and 13,249, respectively) than those of the normal model 
MoNN (DIC = 14,528). The two models with skew-t and 
skew-normal distributions of model errors and random 
effects (MoSTST and MoSNSN) have relatively closer 
DIC values. Specifically, the model with a skew-t dis-
tribution for model errors and a normal distribution of 
random effects (MoNST) has the smallest DIC value 
and exhibited better performance compared to the 
other models. In terms of relative bias (RB) and RMSE, 



Page 7 of 11Ferede et al. BMC Medical Research Methodology           (2024) 24:56 	

Table 1  Simulation Results: Parameter Estimates (Est) with True Value (TV), RB, RMS Error, CP, and DIC for Each Model

Par TV Method Models

MoSTST MoNST MoSNSN MoNN

α1 27.5 Est 27.505 27.506 27.456 29.981

RB 0.000 0.036 -0.002 0.090

RMS 0.123 0.502 0.564 1.984

CP 94.76 94.91 93.71 79.34

α2 -5.0 Est -4.870 -4.867 -4.891 -4.874

RB -0.026 -0.027 -0.022 -0.025

RMS 0.155 0.159 0.134 0.160

CP 67.27 66.80 72.09 53.44

α3 -4.0 Est -3.945 -3.919 -3.939 -3.845

RB -0.014 -0.020 -0.015 -0.039

RMS 0.085 0.114 0.088 0.175

CP 86.47 87.13 84.18 85.24

�1 -9.0 Est -8.933 -8.923 -8.972 -8.851

RB -0.007 -0.009 -0.003 -0.017

RMS 0.399 0.198 0.439 0.225

CP 95.24 95.00 95.89 87.93

�2 -25.0 Est -25.520 -25.454 -25.566 -25.208

RB 0.021 0.018 0.023 0.008

RMS 0.605 0.541 0.653 0.348

CP 60.04 62.96 59.60 87.93

�3 -5.0 Est -5.056 -4.960 -5.047 -4.856

RB 0.011 -0.008 0.010 -0.029

RMS 0.521 0.140 0.561 0.193

CP 96.62 94.96 97.58 79.38

σ 2
ǫ

0.5 Est 0.471 0.487 0.458 4.783

RB 0.058 0.026 0.084 8.565

RMS 0.07 0.064 0.077 4.285

CP 92.69 94.93 90.64 32.51

σ 2
ϕ1

0.1 Est 0.087 0.113 0.103 0.197

RB -0.131 0.130 0.025 0.969

RMS 0.035 0.061 0.038 0.145

CP 96.53 94.49 95.40 86.29

σ 2
ϕ2

0.3 Est 0.329 0.397 0.367 0.499

RB 0.097 0.323 0.222 0.662

RMS 0.172 0.237 0.209 0.378

CP 94.29 91.29 92.96 90.36

σ 2
ϕ3

0.3 Est 0.29 0.391 0.321 0.67

RB  − 0.032 0.304 0.07 1.232

RMS 0.178 0.324 0.189 0.655

CP 95.96 94.56 94.42 89.33

σ 2
ϕ4

0.4 Est 0.4 0.662 0.476 0.815

RB 0 0.655 0.19 1.038

RMS 0.17 0.413 0.241 0.549

CP 95.64 87.47 92.91 80.22

DIC 13,249.70 11,674.80 12,997.80 14,528.40
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however, the model with a skew-t distribution for both 
random effects and model errors (MoSTST) demon-
strated superior performance. This suggests that incor-
porating skewness in modelling the longitudinal data 
and proposing a more flexible distributional assump-
tion (skew distribution) allows for better capturing the 
inherent asymmetries and heavy tails present in the 
data, leading to more accurate estimates. Overall, these 

results emphasize the advantages of employing Bayesian 
SPMEM with skew distribution over the conventional 
Gaussian model, offering greater flexibility and improved 
performance in accurately modelling complex longitudi-
nal data.

Results of the CKD data analysis
In this paper, we included diabetes and hypertension 
as binary covariates based on the real CKD dataset and 
three spline basis functions of time with four random-
effects to model and analyse the longitudinal response, 
the estimated glomerular filtration rate (eGFR). Accord-
ingly, we reformulate the general semiparametric mixed-
effects model (6) as follows:

where the parameter vectors α, λ, ϕi , and Φ(Timeij ) are 
as defined as in the simulation section study. In order 
to obtain an approximation of the spline bases, we con-
sidered two internal knots at 9 and 25  months and two 
boundary knots at 0 and 96  months. The locations of 

(12)
eGFRij = α1 + α2 ∗ Diabetesij + α3 ∗Hypertensionij + ϕi1 + (�1 + ϕi2) ∗ φ1

(
Timeij

)

+(�2 + ϕi3) ∗ φ2
(
Timeij

)
+ (�3 + ϕi4) ∗ φ3

(
Timeij

)
+ εij

Table 2  Comparison of Parameter Estimates (PE) between the Proposed Semiparametric Mixed-Effects Model (SPPLMEM) and the 
Fully Parametric Mixed-Effects Model (FPLMEM)

StD Standard Deviation, CI 95% Credible Interval

Model SPPLMEM FPLMEM

Par PE StD Cl PE StD Cl

α1   55.29 1.58 (52.03, 58.09) 55.86 1.722 (52.28, 58.00)

α2  − 6.38 2.36 (− 11.01, − 1.80)  − 7.58 2.17 (− 11.94, − 3.40)

α3  − 5.69 0.67 (− 7.00, − 4.32)  − 6.25 0.67 (− 7.60, − 4.90)

σ 2
ǫ

60.19 3.03 (54.74, 66.61) 72.3 3.25 (66.14, 79.14)

DIC 10,290 10,430

Table 3  Summary results of CKD data analysis based on four Bayesian models with different distributional specifications

EPM  Estimated Posterior Mean,  StD  Standard Deviation,  CI  95% Credible Interval
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these knots were determined based on the quantiles of 
the distribution of observed measurement time points. 
We proceed to analyse the CKD data using the proposed 
model with varying distributional assumptions, and sub-
sequently compare and interpret the results. We begin 
by initially comparing the performance of two models: 
the proposed semiparametric (partially linear) mixed-
effects model (SPPLMEM) specified in Eq.  (12), and a 
fully parametric (linear) mixed-effects model (FPLMEM) 
that assumes Gaussian distributions for both the random 
effects and model errors. The FPLMEM is specifically 
defined as follows:

where Timeij denotes the observed measurement time 
of the longitudinal biomarkers for the ith subject at the 
jth visit. The results (Table 2) show that the estimates of 
some parameters become large from FPLMEM com-
pared to SPPLMEM. For instance, the estimates of α2 and 
σ2 from SPPLMEM were − 6.38 and 60.19, while from 
FPLMEM they became − 7.58 and 72.30, respectively. In 
addition, in order to select the most suitable Bayesian 
model that accurately represents the CKD data, we also 
compute the deviance information criterion (DIC) [24]. 
Our analysis reveals that the SPPLMEM gives a lower 
DIC value (DIC = 10, 290) in comparison to the FPLMEM 
(DIC = 10, 430).

After selecting the SPPLMEM as the most suitable 
model that accurately represents the data, we proceed 
to further compare four different SPPLMEMs by tak-
ing into account different distributional specifications. 
For model errors and random-effects as described in the 
simulation study. We fitted four Bayesian semiparamet-
ric mixed-effects models to the CKD data. The MCMC 
setup, computations, and convergence diagnostic meth-
ods employed were identical to those described in the 
simulation study. Table 3. displays a summary of the data 
analysis results and estimates for the parameters (Par) 
obtained from the four models with different distribu-
tional specifications.

As shown in Table  3., the CKD data analysis results 
reveal that each model produces slightly varied yet sta-
tistically significant estimates of most of the parameters. 
When comparing the models, the findings reveal that the 
utilization of the 4th model (MoNN), which employs a 
multivariate normal distribution for random effects and 
model errors, may result in an overestimation of some 
of the parameters. Specifically, the population param-
etersα1, α2, α3, �1, �2 , and �3 are prone to being overes-
timated. Notably, as can be clearly seen, the estimated 
scale parameter (the variance) of model errors ( σ 2

ε  ) is 

(13)eGFRij = α1 + α2 ∗Diabetesij + α3 ∗Hypertensionij + bi1 + (α4 + bi2) ∗ Timeij + εij

significantly larger in MoNN compared to the other mod-
els. The 3rd model (MoSNSN) also gives larger param-
eter estimates (e.g.,σ̂ 2

ε  ) compared to the first two models. 
Furthermore, the estimated skewness parameter of the 
outcome eGFR ( δε ) is significantly different from zero in 
the first three models: MoSTST, MoNST, and MoSNSN. 
Some of the skewness parameters of the random effects 
( δϕ ) are also significantly different from zero in MoSTST 
and MoSNSN. Thus, the significantly different from zero 
positive estimates of δε and the subject-specific random 
intercept δϕ1 confirm the presence of positive skewness in 

the longitudinal eGFR data. In other words, the non-zero 
estimates of the skewness parameters and relatively small 
estimates of the variances may indicate that the proposed 
Bayesian models with skew-t distribution of model errors 
and/or random effects (MoSTST and MoNST) fit the 
CKD data well. This is in line with the results of the simu-
lation studies.

In general, the proposed models (MoSTST and 
MoNST) outperform and the standard MoNN. In par-
ticular, MoNST has been chosen as the best model for 
further in-depth interpretation and discussion of the 
results because it has a relatively small DIC value, despite 
the fact that both MoSTST and MoSNSN have some 
significant skewness parameter estimates for the ran-
dom effects. As can be seen from the simulation studies, 
MoNST also has a lower DIC value. This finding, a mixed 
model (skewed in our case) with a normal distribution of 
random-effects, is consistent with the study [15].

The results of all models indicate that the variables 
examined in this study, namely hypertension, diabetes, 
and follow-up time (the spline bases), are statistically 
significant factors contributing to the decline of patients’ 
kidney function. This is attributed to the negative and 
significant association between these covariates and the 
response variable, eGFR. In other words, it is evident 
that these covariates have a substantial association with 
the decrease in GFR estimates. For example, the diabetes 
coefficient ( ̂α2 = −6.66 , 95% CI: [− 10.16, − 3.11]) from 
MoNST (the best-fitting model) can be interpreted as the 
eGFR value of a CKD patient with diabetes being reduced 
by 6.66 units compared to a CKD patient without dia-
betes, while holding the same covariates and random 
effects. Additionally, a hypertensive CKD patient is asso-
ciated with a 4.44 unit lower eGFR value ( ̂α3 = −4.44 , 
95% CI: [− 5.45, − 3.46]) compared to a non-hyperten-
sive CKD patient, with the same covariates and random 
effects.



Page 10 of 11Ferede et al. BMC Medical Research Methodology           (2024) 24:56 

Discussion
In recent years, there has been a growing emphasis in the 
literature on effectively modeling longitudinal data with 
many features. This includes giving careful considera-
tion to the functional forms of longitudinal markers and 
the assumptions made about the distribution of random 
effects and model errors. With this in mind, the main 
objective of this study was to develop a flexible Bayesian 
mixed-effects model that addresses the problems com-
monly observed in longitudinal CKD data, encompassing 
characteristics such as skewness, non-linear effects over 
time, and flexible distributions for both random effects 
and model errors. The ultimate goal was to establish a 
robust statistical methodology that enables accurate and 
reliable inference in complex longitudinal data analysis.

We therefore proposed a Bayesian semiparametric 
mixed-effects model for the longitudinal response eGFR 
that addresses the above issues. To capture the non-lin-
ear effects of time and the flexibility of eGFR, regression 
splines were employed in the model. Additionally, multi-
variate skew distributions were incorporated to account 
for skewness in eGFR and to relax the assumptions about 
its distribution. Simulation studies were first conducted 
to provide a comprehensive description and evaluation of 
the performance of the proposed model.

We applied the proposed model by analysing data on 
chronic kidney disease (CKD) and assessing the rela-
tionship between covariates and estimated glomerular 
filtration rate (eGFR). The model comparison process in 
this study involved two steps. Firstly, we compared the 
proposed semiparametric partially linear mixed-effect 
(SPPLM) model with the fully parametric one (FPLM), 
and our results indicated that the SPPLM model outper-
formed the FPLM model. In the second step, we further 
compared four different SPPLM models, each assuming 
different distributions for the random-effects and model 
errors. As described in the data analysis and results, 
the SPPLM models with skew-t distribution exhibited a 
superior fit to the CKD data in comparison to the Gauss-
ian SPPLM model.

The findings from the application revealed that hyper-
tension, diabetes, and follow-up time had a substantial 
association with kidney function, specifically leading to a 
decrease in eGFR. These factors were identified as impor-
tant predictors and exhibited a negative correlation with 
kidney function.

Additionally, the results of this study imply that when 
dealing with longitudinal data characterized by the 
aforementioned features, it is useful to incorporate non-
parametric smoothing functions (splines) to capture 
non-linear time-effects and utilize skew distributions 
for model errors and/or random effects. In particular, 
accounting for skewness in the longitudinal data analysis 

by utilizing a more flexible distribution, the skew-t distri-
bution, is crucial to handle asymmetry in the data and get 
unbiased results. By doing so, we can obtain less biased 
results and draw valid statistical inferences. Additionally, 
employing a flexible distributional assumption for the 
random-effects can lead to a more accurate explanation 
of subject-specific variations.

Apart from the CKD follow-up data that served as moti-
vation, our methodology has broader applicability in cases 
where the longitudinal data have similar characteristics 
and the fundamental model requirements (or settings) are 
satisfied.

Conclusion
In conclusion, we have proposed a semiparametric 
Bayesian modeling approach with flexible distributions 
for complex longitudinal data. The results of the simu-
lation and application studies have demonstrated that 
our work has made a significant contribution towards 
a more robust and adaptable methodology for mode-
ling intricate longitudinal data. We recommend paying 
special attention to the specifications of the functional 
forms of longitudinal biomarkers and distributional 
assumptions of model errors when modeling complex 
longitudinal data.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12874-​024-​02164-y.

Additional file 1: Appendix A. Convergence diagnostic checking results. 
Figure A.1. Trace plots of some representative parameters from the cho-
sen model. Figure A.2. Autocorrelation function plots (a) and BGR plots 
(b) of some representative parameters. Table A.1. Results of the Geweke’s 
test of convergence. The computed value of the test statistic for each 
parameter from the chosen model. Appendix B. Skew Distributions.

Acknowledgements
Not applicable.

Authors’ contributions
MMF, GAD, SMM, and HAE conceived and designed the study. MMF and WHB 
participated in the data collection. MMF and HAE carried out the data analysis 
and wrote the manuscript. SMM, GAD, HAE, WHB and SMK reviewed drafts of 
the manuscript and offered interpretation and critical comments. All authors 
participated in the review and approval of the final manuscript.

Funding
Not applicable.

Availability of data and materials
The actual CKD data utilized to exemplify the proposed model can be 
obtained from the corresponding author upon a substantial request.

Declarations

Ethics approval and consent to participate
The study was reviewed and approved by the Institutional Ethical Review 
Board of the University of Gondar, Ethiopia (Ref. VP/RTT/05/777/2022). 
All methods were carried out in accordance with relevant guidelines and 

https://doi.org/10.1186/s12874-024-02164-y
https://doi.org/10.1186/s12874-024-02164-y


Page 11 of 11Ferede et al. BMC Medical Research Methodology           (2024) 24:56 	

regulations (the Helsinki Declaration). The Institutional Ethical Review Board of 
the University of Gondar also waived the need for written informed consent 
from individuals due to the retrospective nature of the study and its major 
focus on model development. The data were therefore anonymized before 
the analysis.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Statistics, University of Gondar, Gondar, Ethiopia. 2 Depart-
ment of Epidemiology and Biostatistics, College of Public Health, University 
of South Florida, Tampa FL 33612, USA. 3 Department of Statistics and Actuarial 
Sciences, Jomo Kenyatta University of Agriculture and Technology (JKUAT), 
Nairobi, Kenya. 4 Department of Internal Medicine, College of Medicine 
and Health Sciences, University of Gondar, Gondar, Ethiopia. 5 Department 
of Mathematics, Debre Markos University, Debre Markos, Ethiopia. 6 School 
of Public Health, Jomo Kenyatta University of Agriculture and Technology 
(JKUAT), Nairobi, Kenya. 

Received: 11 July 2023   Accepted: 29 January 2024

References
	1.	 Stanifer JW, Muiru A, Jafar TH, Patel UD. Chronic kidney disease in low-and 

middle-income countries. Nephrol Dial Transplant. 2016;31(6):868–74.
	2.	 Shiferaw WS, Akalu TY, Aynalem YA. Chronic Kidney Disease among 

Diabetes Patients in Ethiopia: A Systematic Review and Meta-Analysis. Int 
J Nephrol. 2020;2020:15.

	3.	 Laird NM, Ware JH. Random-effects models for longitudinal data. Biomet-
rics. 1982;1:963–74.

	4.	 Diggle PJ, Heagerty P, Liang K, Zegger SL. Analysis of longitudinal data. 
2nd ed. Oxford: Oxford University Press; 2002.

	5.	 Hedeker D, Gibbons RD. Longitudinal data analysis. Hoboken, NJ: John 
Wiley & Sons; 2006.

	6.	 Nguyen DV, S¸entu¨rk D, Carroll RJ. Covariate-adjusted linear mixed 
effects model with an application to longitudinal data. J Nonparametr 
Stat. 2008;20(6):459–81.

	7.	 Wu H, Ding AA, De Gruttola V. Estimation of HIV dynamic parameters. Stat 
Med. 1998;17(21):2463–85.

	8.	 Nelder JA, Wedderburn RW. Generalized linear models. Journal of the 
Royal Statistical Society: Series A (General). 1972;135(3):370–84.

	9.	 Tang NS, Tang AM, Pan DD. Semiparametric Bayesian joint models of 
multivariate longitudinal and survival data. Comput Stat Data Anal. 
2014;77:113–29.

	10.	 Lu X, Huang Y. Bayesian analysis of non-linear mixed-effects mixture 
models for longitudinal data with heterogeneity and skewness. Stat Med. 
2014;33(16):2830–49.

	11.	 Sahu SK, Dey DK, Branco MD. A new class of multivariate skew distribu-
tions with applications to Bayesian regression models. Canadian Journal 
of Statistics. 2003;31(2):129–50.

	12.	 Huang X, Li G, Elashoff RM. A joint model of longitudinal and compet-
ing risks survival data with heterogeneous random effects and outlying 
longitudinal measurements. Statistics and its interface. 2010;3(2):185.

	13.	 Arellano-Valle R, Bolfarine H, Lachos V. Bayesian inference for skew-normal 
linear mixed models. J Appl Stat. 2007;34(6):663–82.

	14.	 Ariyo OS, Adeleke MA. Simultaneous Bayesian modelling of skew-normal 
longitudinal measurements with non-ignorable dropout. Comput Statis-
tics. 2022;37(1):303–25.

	15.	 Molenberghs G, Verbeke G. Models for Discrete Longitudinal Data. New 
York: Springer Series in Statistics. 2005. p. 419–435. https://​sci-​hub.​se/​
https://​link.​sprin​ger.​com/​10.​1007/0-​387-​28980-1.

	16.	 McCulloch CE, Neuhaus JM. Misspecifying the Shape of a Random 
Effects Distribution: Why Getting It Wrong May Not Matter. Stat Sci. 
2011;26(3):388–402.

	17.	 Baghfalaki T, Kalantari S, Ganjali M, Hadaegh F, Pahlavanzadeh B. Bayesian 
joint modeling of ordinal longitudinal measurements and competing 
risks survival data for analysing Tehran Lipid and Glucose Study. J Biop-
harm Stat. 2020;30(4):689–703.

	18.	 Zhang H, Huang Y. Bayesian joint modeling for partially linear mixed-
effects quantile regression of longitudinal and time-to-event data with 
limit of detection, covariate measurement errors and skewness. J Biop-
harm Stat. 2021;31(3):295–316.

	19.	 Lu X, Huang Y, Chen J, Zhou R, Yu S, Yin P. Bayesian joint analysis of 
heterogeneous-and skewed-longitudinal data and a binary outcome, 
with application to AIDS clinical studies. Stat Methods Med Res. 
2018;27(10):2946–63.

	20.	 Azarbar A, Wang Y, Nadarajah S. Simultaneous Bayesian modeling of 
longitudinal and survival data in breast cancer patients. Communications 
in Statistics-Theory and Methods. 2021;50(2):400–14.

	21.	 Goolsby MJ. National Kidney Foundation Guidelines for chronic kidney 
disease: evaluation, classification, and stratification. J Am Acad Nurse 
Pract. 2002;14(6):238–42.

	22.	 Lee S, McLachlan GJ. Finite mixtures of multivariate skew t-distributions: 
some recent and new results. Stat Comput. 2014;24(2):181–202.

	23.	 Brooks SP, Gelman A. General methods for monitoring convergence of 
iterative simulations. J Comput Graph Stat. 1998;7(4):434–55.

	24.	 Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures 
of model complexity and _t. Journal of the royal statistical society: Series 
b (statistical methodology). 2002;64(4):583–639.

	25.	 Dagne GA, Huang Y. Bayesian semiparametric mixture Tobit models with 
left censoring, skewness, and covariate measurement errors. Stat Med. 
2013;32(22):3881–98.

	26.	 Andrinopoulou ER, Rizopoulos D, Takkenberg JJ, Lesare E. Combined 
dynamic predictions using joint models of two longitudinal outcomes 
and competing risk data. Stat Methods Med Res. 2017;26(4):1787–801.

	27.	 Zhang H, Huang Y. Quantile regression-based Bayesian joint modeling 
analysis of longitudinal-survival data, with application to an AIDS cohort 
study. Lifetime Data Anal. 2020;26:339–68.

	28.	 Ferede MM, Mwalili S, Dagne G, Karanja S, Hailu W, El-Morshedy M, et al. 
A Semiparametric Bayesian Joint Modelling of Skewed Longitudinal and 
Competing Risks Failure Time Data: With Application to Chronic Kidney 
Disease. Mathematics. 2022;10(24):4816.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://sci-hub.se/https://link.springer.com/10.1007/0-387-28980-1
https://sci-hub.se/https://link.springer.com/10.1007/0-387-28980-1

	Flexible Bayesian semiparametric mixed-effects model for skewed longitudinal data
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Methods
	Motivating CKD data and longitudinal outcome trajectories
	Bayesian modelling
	The semiparametric mixed-effects longitudinal outcome model
	Hierarchical reformulation of the model
	Prior specification and the posterior distribution
	Model comparison and diagnostics checking
	Deviance information criterion (DIC)


	Results
	Simulation studies
	Results of the CKD data analysis

	Discussion
	Conclusion
	Acknowledgements
	References


