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Abstract 

Background  Rapidly developing tests for emerging diseases is critical for early disease monitoring. In the early stages 
of an epidemic, when low prevalences are expected, high specificity tests are desired to avoid numerous false posi-
tives. Selecting a cutoff to classify positive and negative test results that has the desired operating characteristics, such 
as specificity, is challenging for new tests because of limited validation data with known disease status. While there 
is ample statistical literature on estimating quantiles of a distribution, there is limited evidence on estimating extreme 
quantiles from limited validation data and the resulting test characteristics in the disease testing context.

Methods  We propose using extreme value theory to select a cutoff with predetermined specificity by fitting a Pareto 
distribution to the upper tail of the negative controls. We compared this method to five previously proposed cutoff 
selection methods in a data analysis and simulation study. We analyzed COVID-19 enzyme linked immunosorb-
ent assay antibody test results from long-term care facilities and skilled nursing staff in Colorado between May 
and December of 2020.

Results  We found the extreme value approach had minimal bias when targeting a specificity of 0.995. Using 
the empirical quantile of the negative controls performed well when targeting a specificity of 0.95. The higher target 
specificity is preferred for overall test accuracy when prevalence is low, whereas the lower target specificity is pre-
ferred when prevalence is higher and resulted in less variable prevalence estimation.

Discussion  While commonly used, the normal based methods showed considerable bias compared to the empirical 
and extreme value theory-based methods.

Conclusions  When determining disease testing cutoffs from small training data samples, we recommend using 
the extreme value based-methods when targeting a high specificity and the empirical quantile when targeting 
a lower specificity.
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Introduction
When faced with an emerging infectious disease out-
break, it is imperative to rapidly develop diagnostic tests 
to determine individual disease status and estimate com-
munity prevalence. Both individual- and community-
level information is necessary to target public health 
interventions and deploy medical resources. In addition 
to designing tests that accurately measure biological 
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samples for evidence of disease (e.g., antibodies), a criti-
cal challenge is how to classify quantitative test results 
as positive or negative. Therefore, a threshold, based on 
controls with known disease status, must be selected to 
determine positive and negative test results.

Estimating cutoffs for newly developed tests provides 
unique challenges. First, tests can show little separation 
in the distributions for positive and negative controls. 
The threshold can be chosen to target a particular sen-
sitivity or specificity, but not both. Second, many early 
tests have a limited number of controls with known dis-
ease status. For example, a study found that of 47 coro-
navirus disease 2019 (COVID-19) antibody tests used in 
developing countries, the majority had fewer than 200 
negative controls and some had as few as 31 [1]. Thus, 
estimating the cutoff that will have the desired sensitivity 
or specificity must be done from limited data.

This raises two important questions. First, what sen-
sitivity or specificity should be targeted? Second, how 
to best estimate a cutoff value for the target sensitiv-
ity or specificity? For emerging diseases, we expect the 
prevalence to be low. Thus, to optimize the number of 
tests with the correct result, we should prioritize cor-
rectly identifying negative results and consequently have 
a high specificity [2, 3]. For this reason, the Centers for 
Disease Control and Prevention (CDC) recommended 
high specificity, such as 0.995, for tests developed in the 
early part of the COVID-19 pandemic [4]. To achieve a 
target specificity, researchers commonly use the same 
quantile of the negative controls distribution as a cutoff. 
Hence, the objective is to estimate the 0.995 quantile of 
a likely skewed distribution from limited training data. 
Two common approaches to estimating a quantile of the 
negative controls are to use the empirical quantile or use 
the quantiles of a parametric distribution, such as normal 
or lognormal, fitted to the data [3, 5–7]. However, these 
methods have not been specifically evaluated for select-
ing cutoffs of rapidly developed tests for emerging dis-
eases and the resulting test characteristics.

We provide two contributions to the literature. First, 
we propose using methods from extreme value theory 
literature to estimate a cutoff for a desired target specific-
ity. Our proposed approach is to fit a generalized Pareto 
distribution to the upper tail of the negative control data 
[8]. This approach has been broadly used to estimate 
extreme values of events such as rainfall [9], air pollu-
tion exposures [10], and stock prices [11], among other 
applications, but has never been applied to cutoff selec-
tion. Second, we compare commonly used methods and 
the proposed extreme value-based approach, for estimat-
ing the cutoffs of emerging disease tests through a sim-
ulation study and data application. We compare cutoff 
estimation methods based on their accuracy in achieving 

a target specificity, individual tests, and estimating com-
munity prevalence. We also compare the impact of target 
specificities on these outcomes. In our data analysis, we 
focus on enzyme linked immunosorbent assay (ELISA) 
antibody test data collected during the first year of the 
COVID-19 pandemic. However, the methods proposed 
are general and can be applied to data from any test. In 
our simulation study, we demonstrated the extreme value 
method had the least bias for estimating a cutoff for a 
high target specificity and that lower target specificities 
are easier to estimate and may perform better when the 
objective is estimating prevalence.

Methods
Data
We used two data sources in our analysis. The training 
dataset contained blood samples from staff at long-term 
care facilities in Colorado, USA, sampled between June 
and December of 2020. A total of 226 staff members 
underwent up to five tests each, resulting in 690 samples. 
Each sample was tested using three different antibody 
tests: a neutralization assay test and two different ELISA 
antibody tests. One ELISA test targeted the spike pro-
tein and the other targeted the receptor-binding domain 
(RBD). The neutralization assay test is considered the 
“gold standard” in antibody testing, so we used these 
results to identify positive and negative controls [12–14]. 
This resulted in 245 positive controls and 445 negative 
controls. Additional details are given elsewhere [15].

The testing dataset consisted of samples from 186 
skilled nursing staff during May 2020. Researchers col-
lected one sample from each staff member and ran mul-
tiple antibody tests, including the spike and RBD ELISA 
tests used in the training dataset, as described elsewhere 
[16].

For both datasets, we normalized the results of the 
ELISA tests to account for batch effects. Each sample was 
run twice. We calculated the positive to negative ratio 
(P/N) by dividing the average optical density for each 
sample (P) by the average of the negative controls run on 
the same plate (N) as the sample

This has been described in more detail elsewhere [7, 
16].

Statistical methods to estimate cutoff values
Our objective in determining the cutoff value is to esti-
mate the Q quantile of the negative controls for a target 
specificity of Q. Let x denote the vector of n negative 
control test results.

(1)

P/N ratio =
Average of samples

average of negative samples on plate
.
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Normal method. The normal method finds the Q quantile 
of a normal distribution with a mean of x̄ and a standard 
deviation of sx , where x̄ and sx denote the mean and stand-
ard deviation of x , respectively [3, 5–7, 17, 18].

Lognormal method. The lognormal method is the nor-
mal method applied to the data after a natural log trans-
formation [5, 7, 17]. This equates to fitting a lognormal 
distribution to the raw data and using the Q quantile of that 
lognormal distribution.

MAD method. The MAD method is a modifica-
tion of the normal method that replaces the mean 
with the median, x̃ , and the standard deviation 
with the scaled mean absolute deviation (MAD), 
sMAD
x = 1.4826×median{|xi −median(x)|}ni=1 [5, 6, 18]. 

This approach is intended to be robust to outliers.
Log MAD method. The log MAD method is the MAD 

method applied to natural log-transformed data [5, 6].
Empirical method. The empirical method uses the empir-

ical quantile of x as an estimator of the cutoff, avoiding par-
ametric assumptions [5–7, 17, 18]. The empirical method is 
the only nonparametric method widely used in the litera-
ture and the only one considered herein.

To calculate the Q empirical quantile from a sam-
ple of size n, we calculate a weighted average of the 
two order statistics surrounding the desired quan-
tile. Specifically, (1− γ )x(i) + γ x(i+1) where x(i) 
denotes the ith order statistic, i = ⌊(n− 1)Q + 1⌋ , 
γ = (n− 1)Q + 1− ⌊(n− 1)Q + 1⌋ , and ⌊·⌋ is the floor 
function.

Pareto method using the upper 10% (Pareto 0.9) and 
upper 5% (Pareto 0.95). The Pareto method, based on 
extreme value theory, fits a generalized Pareto distribu-
tion to the upper tail of x . Like the normal and lognormal 
methods, this method fits a parametric distribution to the 
training data. However, it differs from those methods as 
the Pareto approach fits a parametric distribution only to 
the upper tail of the distribution of observed data. Hence, 
the Pareto methods focus on the part of the distribution 
that we are interested in rather than fitting a distribution 
to the center of the data and extrapolating to the tails. This 
approach has been shown to better approximate tail behav-
ior in a variety of settings.

Let u denote some threshold, and y be the values in x that 
exceed u. Asymptotically, under regularizing conditions, y 
follows the generalized Pareto distribution as u approaches 
the upper limit of the distribution for x [8, 19]. The general-
ized Pareto distribution is

(2)G(y; σu, ξ) =











1−
�

1+
ξ(y−u)
σu

�− 1
ξ
ξ �= 0

1− exp
�

−
y−u
σu

�

ξ = 0.

We make the simplifying assumption that ξ = 0 , which 
results in a shifted exponential distribution and has been 
shown to be preferable for small sample sizes [20]. Thus, we 
only estimate σu from the data as u is pre-specified.

Following prior literature, we set u to be the kth quantile 
of x and consider two values of k: 90 and 95 [21, 22]. We 
then fit an exponential distribution to y − u . We use maxi-
mum likelihood to estimate y − u ∼ exp(�) such that 
�̂ = 1

ȳ−u where ȳ is the sample mean of y.
Since y is assumed to be the upper (100− k) % of the 

data, the upper Q′ = Q−k/100
1−k/100  quantile of our fitted expo-

nential distribution corresponds to the upper Q quantile of 
the data overall. Thus, we set the cutoff as

where F−1(Q′, �̂) is the inverse CDF of an exponen-
tial distribution with a scale parameter of �̂ , evaluated 
at Q′ . When Q = 0.95 and k = 95 , the cutoff estimate is 
equivalent to the empirical method estimate because 
Q′ = 0 . The threshold k should be selected to be suffi-
ciently below Q, so Q′ itself is not an extreme quantile. 
The threshold must also be sufficiently large to focus on 
the upper tail of the distribution.

Hybrid approaches. We also consider hybrid approaches 
that provide a data-driven approach to select a cutoff esti-
mation method [5, 7]. We first test for normality using the 
Shapiro-Wilk test with a significance level of 0.05. If the test 
fails to reject, we use the normal method. If the test rejects 
normality, we natural log transform and test for normal-
ity again. If the test fails to reject, we use the lognormal 
method. If the test rejects normality, we use one of three 
methods: empirical, Pareto 90%, and Pareto 95% (hence-
forth referred to as hybrid empirical, hybrid Pareto 0.9, and 
hybrid Pareto 0.95, respectively).

Additional details on the estimation methods are given in 
Web Appendix 1.

Statistical methods to estimate prevalence
To accurately estimate the proportion of the population 
with antibodies for the disease, the seroprevalence, we 
account for the sensitivity and specificity of the test via the 
Rogan-Gladen adjustment [23], modified to disallow any 
negative estimates. The prevalence estimator is

where p̂ is the proportion of tests classified as positive in 
the testing data and ˆsens denotes the estimated sensitivity 

(3)C = F−1(Q′, �̂)+ u

(4)= −�̂ log(1− Q′)+ u,

(5)π̂ = max
p̂+ Q − 1

Q + ˆsens− 1
, 0 ,
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of the test: the proportion of the positive controls that 
correctly tested positive in the training data. We use 
the target specificity Q as the specificity estimate. While 
it is possible to estimate the specificity, doing so would 
require splitting the limited training dataset in two, one 
portion to estimate the cutoff and the second to esti-
mate specificity. Further splitting limited training data is 
undesirable.

Data analysis
We used the training dataset to set cutoffs and evaluate the 
sensitivity. We established cutoffs for both the spike and 
RBD ELISA tests using two different target specificities: 
0.95 and 0.995. For each target specificity and test, we esti-
mated the cutoff using each of the seven methods described 
above and the three hybrid methods. We used the propor-
tion of training dataset samples with positive neutralization 
assay results above the cutoff to estimate the sensitivity and 
the proportion of samples with a negative result below the 
cutoff to calculate the empirical specificity.

We then used the cutoffs to classify each observation 
in the testing dataset as positive or negative. The result-
ing positivity was used to calculate the Rogan-Gladen 
adjusted prevalence for each cutoff.

Simulation study
We modeled our simulated data after the training data-
set. For each test (spike or RBD) and control type (posi-
tive or negative), we fit mixture distributions of the form

where K is the number of components, πi gives the 
weight of each component, fi(x) is the probability den-
sity function of each component evaluated at x, and g(x) 
is the resulting mixture distribution evaluated at x. We 
considered gamma, Weibull, and lognormal distributions 
and either two or three components. All possible com-
binations of these distribution were fit using the ltmix 
package in R for each number of components [24]. We 
selected the best model for each in terms of BIC and 
visual inspection. The resulting mixture distributions are 
given in Supplementary Table S1.

We sampled from the fitted mixture distributions to 
generate data for the simulation study. By sampling from 
known mixture distributions, we were able to calculate 
the true quantiles for the population we sampled from, 
allowing us to assess bias and the root mean squared 
error (RMSE) of the cutoff value.

We considered eight scenarios in our simulation study. 
The data was either simulated from the fitted spike P/N 
ratios distribution (scenario A) or the fitted RBD P/N 

(6)g(x) =

K
∑

i=1

πifi(x)

ratios distribution (scenario B). We varied the training 
sample size between 50 and 200 controls of each type 
(positive and negative), resulting in total sample sizes of 
100 and 400 and a prevalence of 0.5. We set the target 
specificity at 0.95 or 0.995. For each simulated training 
dataset, we generated a corresponding testing dataset of 
size 500, with the number of positive and negative con-
trols determined by the prevalence: either 0.05 or 0.3. We 
generated 10,000 training datasets and testing datasets.

For each training dataset, we estimated the cutoff using 
all seven methods and the three hybrid methods. Then, 
we estimated the sensitivity of the cutoff using the pro-
portion of the positive controls in the training dataset 
that were correctly predicted as positive using that cutoff. 
We also used each cutoff to classify positive and negative 
results in the testing dataset. We calculated the Rogan-
Gladen adjusted prevalence as previously described.

We evaluated the cutoffs in terms of the bias and 
RMSE. Let XQ,s be the true Q percentile of the mixture 
distribution from which we simulated the negative con-
trols, i.e., the true cutoff with a specificity of Q. We calcu-
lated the bias for each setting, s, as

where Ci,m,Q,s is the cutoff from the ith simulated train-
ing dataset under setting s, using method m with a target 
specificity of Q. The RMSE was calculated as

To evaluate the impact of the cutoff method on the 
inference drawn from the tests (the individual test results 
and community prevalence estimates), we used accuracy 
and the bias of the prevalence estimates. We calculated 
the accuracy of the predictions for the simulated testing 
datasets as the proportion of testing dataset observations 
that were correctly predicted for the cutoff of interest. 
We averaged the accuracies across the 10,000 datasets to 
estimate the average accuracy for each method, setting, 
and target quantile combination. The prevalence for each 
dataset, π̂i,m,Q,s , was calculated as in (5). For true preva-
lence πs , the bias was calculated as

Results
Data analysis
Figure  1 shows the negative control training data, posi-
tive control training data, and testing data for both the 

(7)Cutoff Biasm,Q,s =

∑10,000
i=1 Ci,m,Q,s

10, 000
− XQ,s,

(8)RMSEm,Q,s =

√

∑10,000
i=1

(

Ci,m,Q,s − XQ,s

)2

10, 000
.

(9)Prevalence Biasm,Q,s =

∑10,000
i=1 π̂i,m,Q,s

10, 000
− πs.
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Fig. 1  a-d Histogram of the training dataset for each test and control type overlaid with the corresponding mixture distribution from which 
the data was generated in the simulation study (training data only). The testing data set are in panels (e) and (f). The first column corresponds 
to the spike test, and the second to the receptor-binding domain (RBD) test. Training data was sampled from staff at long-term care facilities 
in Colorado, USA between June and December 2020. Testing data collected from skilled nursing staff in Colorado during May 2020
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spike and RBD tests. The spike test had a smaller range 
of P/N ratios and less separation between the positive 
and negative controls. The RBD negative controls had a 
sparser upper tail, and the positive controls had a more 
symmetric distribution compared to the spike test.

Spike test
Figure  2 shows the training and testing data and the 
estimated cutoff for each method, target specificity, and 
test. Web Appendix 3 shows the results in numerical 
form. Overall, the different estimation methods resulted 

Fig. 2  P/N ratios for the positive controls, negative controls, and testing data, jittered horizontally. Cutoffs as calculated by each of the seven 
methods are shown as horizontal lines. The first row shows the spike test cutoffs with a a target specificity of 0.995 and b a target specificity 
of 0.95. The second row shows the receptor-binding domain (RBD) test with c a specificity of 0.995 and d a target specificity of 0.95. Training data 
was sampled from staff at long-term care facilities in Colorado, USA between June and December 2020. Testing data collected from skilled nursing 
staff in Colorado during May 2020
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Table 1  Rogan-Gladen adjusted prevalence estimate of the testing dataset for each cutoff method, test, and target specificity

Empirical and Pareto 0.95 cutoffs are equivalent when the target specificity is 0.95

 Abbreviations: MAD mean absolute deviation, RBD receptor-binding domain

Spike RBD

Prevalence Sensitivity Specificity Prevalence Sensitivity Specificity

Target specificity=0.995

     Empirical 0.64 0.28 0.99 0.26 0.87 0.99

     Normal 0.30 0.77 0.97 0.28 0.96 0.99

     Log Normal 0.35 0.63 0.98 0.28 0.98 0.98

     MAD 0.32 0.99 0.91 0.39 1.00 0.85

     Log MAD 0.29 0.93 0.95 0.32 0.99 0.93

     Pareto 0.9 0.63 0.27 0.99 0.27 0.91 0.99

     Pareto 0.95 0.61 0.31 0.99 0.26 0.87 0.99

Target specificity=0.95

     Empirical 0.29 0.93 0.95 0.30 0.99 0.95

     Normal 0.30 0.98 0.94 0.28 0.98 0.98

     Log Normal 0.31 0.99 0.93 0.31 0.99 0.94

     MAD 0.37 0.99 0.85 0.42 1.00 0.80

     Log MAD 0.34 0.99 0.90 0.39 1.00 0.84

     Pareto 0.9 0.29 0.96 0.94 0.28 0.99 0.97

Table 2  The mean and Monte Carlo standard error in parentheses of the bias and RMSE of the cutoff when targeting a specificity of 
0.995. The method(s) with minimal bias and RMSE in each scenario or equivalent after rounding are bolded

Abbreviations: MAD mean absolute deviation, RMSE root mean squared error

Scenario A Scenario B

n=50 n=200 n=50 n=200

Bias of cutoff

     Empirical -0.93 (0.0049) -0.37 (0.0035) -3.60 (0.0327) -1.77 (0.0249)

     Normal -1.74 (0.0027) -1.70 (0.0014) -6.26 (0.0158) -5.71 (0.0112)

     Log Normal -1.34 (0.0030) -1.36 (0.0015) -6.72 (0.0070) -6.79 (0.0032)

     MAD -2.68 (0.0010) -2.68 (0.0005) -9.08 (0.0013) -9.09 (0.0006)

     Log MAD -2.00 (0.0025) -2.02 (0.0012) -8.41 (0.0031) -8.47 (0.0014)

     Pareto 0.9 -0.15 (0.0064) -0.02 (0.0033) -3.03 (0.0309) -2.97 (0.0154)

     Pareto 0.95 -0.50 (0.0059) -0.02 (0.0035) -2.73 (0.0368) -1.35 (0.0227)
     Hybrid Empirical -0.93 (0.0048) -0.38 (0.0036) -3.59 (0.0327) -1.77 (0.0249)

     Hybrid Pareto 0.9 -0.37 (0.0069) -0.03 (0.0033) -3.06 (0.0310) -2.97 (0.0154)

     Hybrid Pareto 0.95 -0.62 (0.0061) -0.03 (0.0035) -2.74 (0.0368) -1.35 (0.0227)
RMSE of cutoff

     Empirical 1.35 (0.0039) 0.80 (0.0031) 7.47 (0.0789) 5.28 (0.0360)

     Normal 1.82 (0.0024) 1.72 (0.0014) 7.01 (0.0180) 6.14 (0.0090)

     Log Normal 1.47 (0.0026) 1.39 (0.0014) 6.86 (0.0059) 6.82 (0.0031)

     MAD 2.69 (0.0010) 2.68 (0.0005) 9.08 (0.0013) 9.09 (0.0006)

     Log MAD 2.07 (0.0022) 2.04 (0.0012) 8.43 (0.0030) 8.48 (0.0014)

     Pareto 0.9 1.28 (0.0059) 0.65 (0.0029) 6.88 (0.0619) 4.28 (0.0133)
     Pareto 0.95 1.28 (0.0052) 0.70 (0.0033) 7.84 (0.0871) 4.74 (0.0294)

     Hybrid Empirical 1.34 (0.0037) 0.80 (0.0031) 7.45 (0.0790) 5.28 (0.0360)

     Hybrid Pareto 0.9 1.43 (0.0057) 0.66 (0.0030) 6.91 (0.0616) 4.28 (0.0133)
     Hybrid Pareto 0.95 1.37 (0.0050) 0.71 (0.0033) 7.85 (0.0870) 4.74 (0.0294)
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in very different cutoff values. When targeting a speci-
ficity of 0.995, the spike test cutoffs ranged from 1.8 to 
4.6 compared to a range of 1.5 to 2.5 when targeting a 
specificity of 0.95. The MAD normal methods consist-
ently estimated the lowest cutoffs, while the empirical 
and Pareto methods resulted in the highest estimates. 
Using the hybrid approaches, we rejected normality for 
the untransformed and natural log transformed data and 
used the empirical and Pareto estimators.

Because the cutoffs are in the tail of the distribution for 
the negative controls, there are not many negative control 
observations between the cutoff values from the different 
methods (Fig. 2). Thus, the differences in the cutoffs have 
minimal impact on the empirical specificities (Table  1). 
The cutoffs had a larger impact on the empirical sensi-
tivity because there were many positive controls in the 
range of the cutoffs as shown in Fig. 2. For example, the 
Pareto 0.9 and the lognormal cutoffs had similar train-
ing data empirical specificities, 0.993 versus 0.978, when 
targeting a specificity of 0.995. However, the empirical 
sensitivities were substantially different: 0.27 and 0.63, 
respectively.

The Rogan-Gladen adjusted prevalence estimate for 
each cutoff method is shown in Table 1. The prevalence 

estimates from cutoffs targeting a specificity of 0.95 
ranged from 0.29 to 0.37. Those targeting 0.995 ranged 
from 0.29 to 0.64. Most prevalence estimates ranged 
from 0.26 to 0.42 with either target specificity, but the 
prevalence estimates from the empirical and Pareto cut-
offs targeting a specificity of 0.995 were much larger, 
between 0.61 and 0.64.

RBD test
The estimated cutoffs for the RBD test were also more 
variable when targeting a specificity of 0.995. The MAD 
normal cutoffs were the smallest, and the empirical 
and Pareto cutoffs were similar to each other. We again 
rejected normality both for the raw and log transformed 
data, and the hybrid method estimates were equivalent to 
the empirical and Pareto estimates.

The RBD test showed greater separation in the distri-
butions of the negative controls and positive controls, 
resulting in higher and more consistent empirical sensi-
tivities, with all sensitivities greater than 0.87 (Table  1). 
The reduced variability in the empirical sensitivity esti-
mates between estimation methods resulted in less vari-
ability of the prevalence estimates, compared to the spike 
tests.

Table 3  The mean and Monte Carlo standard error in parentheses of the bias and RMSE of the cutoff when targeting a specificity of 
0.95. The method(s) with minimal bias and RMSE in each scenario or equivalent after rounding are bolded

Empirical and Pareto 0.95 cutoffs are equivalent when the target specificity is 0.95

 Abbreviations: MAD mean absolute deviation, RMSE root mean squared error

Scenario A Scenario B

n=50 n=200 n=50 n=200

Bias of cutoff

     Empirical -0.14 (0.0025) -0.05 (0.0014) -0.02 (0.0041) -0.02 (0.0015)
     Normal -0.26 (0.0018) -0.23 (0.0010) 0.65 (0.0105) 1.00 (0.0073)

     Log Normal -0.35 (0.0014) -0.36 (0.0007) -0.23 (0.0029) -0.24 (0.0014)

     MAD -0.92 (0.0007) -0.92 (0.0004) -1.29 (0.0009) -1.29 (0.0004)

     Log MAD -0.68 (0.0012) -0.68 (0.0006) -1.03 (0.0015) -1.06 (0.0007)

     Pareto 0.9 -0.07 (0.0022) -0.03 (0.0012) 0.65 (0.0077) 0.70 (0.0038)

     Hybrid Empirical -0.17 (0.0024) -0.05 (0.0014) -0.03 (0.0041) -0.02 (0.0015)
     Hybrid Pareto 0.9 -0.12 (0.0023) -0.03 (0.0012) 0.64 (0.0077) 0.70 (0.0038)

RMSE of cutoff

     Empirical 0.51 (0.0021) 0.29 (0.0012) 0.82 (0.0130) 0.31 (0.0017)
     Normal 0.45 (0.0015) 0.30 (0.0008) 2.20 (0.0341) 1.77 (0.0170)

     Log Normal 0.45 (0.0012) 0.38 (0.0007) 0.63 (0.0028) 0.37 (0.0011)

     MAD 0.93 (0.0007) 0.93 (0.0004) 1.30 (0.0009) 1.30 (0.0004)

     Log MAD 0.72 (0.0011) 0.69 (0.0006) 1.08 (0.0013) 1.07 (0.0007)

     Pareto 0.9 0.45 (0.0019) 0.23 (0.0010) 1.67 (0.0182) 1.04 (0.0056)

     Hybrid Empirical 0.51 (0.0020) 0.29 (0.0012) 0.83 (0.0129) 0.31 (0.0017)
     Hybrid Pareto 0.9 0.47 (0.0019) 0.24 (0.0010) 1.67 (0.0181) 1.04 (0.0056)
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Simulation study
Figure 1a-d show the distribution functions we generated 
data from. There was more overlap between the posi-
tive and negative cases in the data for scenario A than in 
scenario B. This is partially a result of the right skew of 
the positive controls and partially because the tail of the 
negative controls extends further in scenario A than in 
scenario B.

Cutoff estimation
Table  2 shows the bias and the RMSE of the cutoff for 
each method when targeting a specificity of 0.995. In the 
majority of cases, the Pareto methods were superior in 
terms of bias and RMSE. The only exception was scenario 
B with a training sample size of 50 where the RMSE was 
smallest for the lognormal method because the larger 
bias for this method was offset by the smaller variance.

The cutoff estimates with every method were negatively 
biased, meaning the cutoff was below the true 0.995 
quantile for each method, on average. Thus, the specific-
ity of the estimated cutoff was below the target, on aver-
age. The MAD and log MAD methods were the most 
biased while the Pareto methods were the least biased.

The hybrid methods all had slightly higher RMSE and 
bias than their corresponding Pareto or empirical meth-
ods. Normality and log normality were both rejected 
for the vast majority of the datasets: 99-100% of data-
sets with a training sample size of 200 and 59-92% with 
a training sample size of 50. The results are, therefore, 
mostly the Pareto and empirical cutoffs but with a small 
number of poorer performing normal or lognormal cut-
offs mixed in.

Table  3 shows, when targeting a specificity of 0.95, 
the magnitude of the bias and RMSE were smaller. The 
empirical method had the minimal bias under scenario B. 
The Pareto 0.9 and normal methods had a positive bias 
for scenario B, compared to the negative bias when tar-
geting a specificity of 0.995.

Prevalence estimation
Table 4 shows simulation results for the Rogan-Gladen 
adjusted prevalence estimates when targeting a spec-
ificity of 0.995. The Pareto cutoffs had little bias but 
had larger variability when targeting a specificity of 
0.995. In every case, the average of the prevalence 
point estimates was closest to the truth using one of 

Table 4  The bias and RMSE in parentheses of the Rogan-Gladen adjusted prevalence estimates when targeting a specificity of 0.995. 
The method(s) with the smallest bias in each scenario or equivalent after rounding are bolded

Abbreviations: MAD mean absolute deviation

Scenario A Scenario B

n=50 n=200 n=50 n=200

Prevalence=0.05

     Empirical 0.02 (0.0328) 0.01 (0.0212) 0.02 (0.0315) 0.00 (0.0119)
     Normal 0.04 (0.0406) 0.04 (0.0362) 0.03 (0.0300) 0.01 (0.0145)

     Log Normal 0.03 (0.0317) 0.03 (0.0291) 0.02 (0.0213) 0.02 (0.0159)

     MAD 0.09 (0.0911) 0.09 (0.0878) 0.14 (0.1374) 0.14 (0.1361)

     Log MAD 0.05 (0.0499) 0.05 (0.0461) 0.08 (0.0754) 0.07 (0.0695)

     Pareto 0.9 0.01 (0.0453) 0.00 (0.0204) 0.02 (0.0247) 0.00 (0.0074)
     Pareto 0.95 0.02 (0.0382) 0.00 (0.0213) 0.02 (0.0346) 0.00 (0.0096)
     Hybrid Empirical 0.02 (0.0322) 0.01 (0.0212) 0.02 (0.0311) 0.00 (0.0119)
     Hybrid Pareto 0.9 0.02 (0.0478) 0.00 (0.0205) 0.02 (0.0255) 0.00 (0.0074)
     Hybrid Pareto 0.95 0.02 (0.0395) 0.00 (0.0214) 0.03 (0.0348) 0.00 (0.0096)

Prevalence=0.30

     Empirical 0.02 (0.0563) 0.01 (0.0396) 0.01 (0.0309) 0.00 (0.0161)
     Normal 0.03 (0.0390) 0.03 (0.0295) 0.02 (0.0244) 0.01 (0.0125)

     Log Normal 0.03 (0.0418) 0.02 (0.0290) 0.02 (0.0173) 0.01 (0.0122)

     MAD 0.07 (0.0676) 0.06 (0.0646) 0.10 (0.1012) 0.10 (0.1003)

     Log MAD 0.04 (0.0420) 0.03 (0.0343) 0.06 (0.0553) 0.05 (0.0512)

     Pareto 0.9 0.01 (0.0976) 0.00 (0.0438) 0.01 (0.0293) 0.00 (0.0105)
     Pareto 0.95 0.02 (0.0749) 0.00 (0.0447) 0.01 (0.0349) 0.00 (0.0154)
     Hybrid Empirical 0.02 (0.0554) 0.01 (0.0396) 0.01 (0.0305) 0.00 (0.0161)
     Hybrid Pareto 0.9 0.01 (0.0922) 0.00 (0.0438) 0.01 (0.0298) 0.00 (0.0105)
     Hybrid Pareto 0.95 0.02 (0.0722) 0.00 (0.0447) 0.01 (0.0350) 0.00 (0.0154)
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the Pareto methods. However, in scenario A the Pareto 
estimates, especially with a sample size of 50, were 
more variable than the normal-based methods. Table 5 
shows the prevalence when targeting a specificity 
of 0.95. The variability for the Pareto and empirical 
methods were lower when targeting a lower specificity, 
and particularly at the smaller sample size. With both 
target specificities, the MAD and log MAD methods 
were positively biased, while the other methods had 
a smaller bias, generally positive. The hybrid method 
estimates were again similar to the corresponding 
empirical and Pareto estimates.

Test accuracy
We consider the accuracy of the cutoff estimation 
methods for classifying individuals as positive or nega-
tive in the testing data. Tables  6 and 7 show the pro-
portion of testing set observations correctly classified 
with a target specificity of 0.995 and 0.95, respectively. 
The MAD methods’ cutoffs were negatively biased, 
leading to a lower specificity and decreased accuracy 
in low prevalence scenarios. The Pareto methods had 
the highest accuracy (or equivalent to the highest 
accuracy) when prevalence was 0.05.

When the prevalence was higher at 0.3 and using the 
lower target specificity, the Pareto method was most 
accurate in scenario B. All but the MAD methods per-
formed similarly for scenario A. With the higher target 
specificity, the MAD cutoffs had highest accuracy for 
scenario A, and the lognormal method was most accu-
rate for scenario B.

Discussion
It is imperative to rapidly develop and deploy prognos-
tic tests for emerging infectious diseases that can be 
used to classify individuals and estimate prevalence in a 
community. A common challenge for tests is determin-
ing a cutoff value to separate positive and negative cases 
as there is often overlap in the results between the posi-
tive and negative cases. This is especially challenging 
with early tests for emerging diseases for which there is 
limited training data with validated positive and nega-
tive controls. Common approaches to estimating cutoff 
values are using the quantile of a parametric distribution 
fit to the negative control test data or using the empirical 
quantile of the negative control test data. Yet, there is lit-
tle guidance on how to select a cutoff to separate positive 
and negative results, especially for small data sets. Here, 
we proposed using methods from extreme value theory, 
specifically using the generalized Pareto distribution 

Table 5  The bias and RMSE in parentheses of the Rogan-Gladen adjusted prevalence estimates when targeting a specificity of 0.95. 
The method(s) with the smallest bias in each scenario or equivalent after rounding are bolded

Empirical and Pareto 0.95 cutoffs are equivalent when the target specificity is 0.95

 Abbreviations: MAD mean absolute deviation

Scenario A Scenario B

n=50 n=200 n=50 n=200

Prevalence=0.05

     Empirical 0.01 (0.0323) 0.00 (0.0173) 0.02 (0.0293) 0.00 (0.0152)
     Normal 0.02 (0.0287) 0.02 (0.0186) 0.01 (0.0404) -0.01 (0.0260)

     Log Normal 0.03 (0.0292) 0.02 (0.0242) 0.03 (0.0369) 0.02 (0.0236)

     MAD 0.10 (0.1049) 0.10 (0.0997) 0.16 (0.1558) 0.15 (0.1536)

     Log MAD 0.06 (0.0621) 0.06 (0.0566) 0.11 (0.1129) 0.11 (0.1114)

     Pareto 0.9 0.01 (0.0263) 0.00 (0.0146) 0.00 (0.0298) -0.02 (0.0215)

     Hybrid Empirical 0.01 (0.0324) 0.00 (0.0173) 0.02 (0.0301) 0.00 (0.0152)
     Hybrid Pareto 0.9 0.01 (0.0286) 0.00 (0.0147) 0.00 (0.0308) -0.02 (0.0215)

Prevalence=0.30

     Empirical 0.01 (0.0281) 0.00 (0.0153) 0.01 (0.0223) 0.00 (0.0122)
     Normal 0.02 (0.0245) 0.01 (0.0153) 0.01 (0.0295) -0.01 (0.0196)

     Log Normal 0.02 (0.0239) 0.02 (0.0186) 0.02 (0.0280) 0.01 (0.0179)

     MAD 0.08 (0.0781) 0.07 (0.0732) 0.11 (0.1146) 0.11 (0.1133)

     Log MAD 0.05 (0.0468) 0.04 (0.0415) 0.08 (0.0830) 0.08 (0.0822)

     Pareto 0.9 0.01 (0.0244) 0.00 (0.0135) 0.00 (0.0225) -0.01 (0.0164)

     Hybrid Empirical 0.01 (0.0279) 0.00 (0.0153) 0.01 (0.0229) 0.00 (0.0122)
     Hybrid Pareto 0.9 0.01 (0.0256) 0.00 (0.0135) 0.00 (0.0233) -0.01 (0.0164)



Page 11 of 14Pugh et al. BMC Medical Research Methodology           (2024) 24:30 	

to estimate the upper tail of the negative control train-
ing data and its quantiles, to estimate a cutoff value to 
achieve a target specificity. We compared the proposed 
approach and common alternatives in a simulation study.

Our simulation demonstrated that when targeting a 
very high specificity, 0.995 as recommended by the CDC 
early in the COVID-19 pandemic [4], the Pareto meth-
ods proposed had lower bias and RMSE for estimating a 
cutoff value. When targeting a lower target specificity of 
0.95, the empirical method consistently performed well. 
Methods that relied on parametric distributions (e.g., 
normal, lognormal, MAD normal and MAD lognormal) 
generally had large bias and RMSE.

Additionally, we compared the recommended target 
specificity of 0.995 to a target specificity of 0.95 and found 
the desired target specificity varied according to the goal 
of the analysis as well as the prevalence of the popula-
tion. In the low prevalence setting we might expect for an 
emerging disease, using a higher target cutoff of 0.995, as 
compared to the more moderate 0.95, resulted in better 
accuracy for classifying individuals as positive or negative 
(Tables  6 and 7). With higher prevalence, accuracy was 
overall higher when targeting a specificity of 0.95 instead 

of 0.995. We also found the variability of the prevalence 
estimate was generally lower for the empirical and Pareto 
methods when targeting a specificity of 0.95.

The results of our data analysis of two COVID-19 anti-
body tests are consistent with the results of the simula-
tion study. The Pareto and empirical methods, which 
showed minimal negative bias in the simulation study, 
also tended to have the highest cutoff estimates in the 
data analysis. The MAD methods showed considerable 
negative bias in the simulation study and had the smallest 
estimates in the data analysis. Additionally, like the simu-
lation study, the prevalence estimates showed more vari-
ability when targeting a specificity of 0.995 rather than 
0.95.

The performance of the cutoff estimators and the 
resulting accuracy at the individual level and prevalence 
estimators at the community-levels will vary depending 
on the shape of the distributions of positive and nega-
tive results and the separation between those two dis-
tributions. The shape of the distribution impacts how 
accurately the target specificity can be estimated for the 
methods using parametric assumptions. The separation 
of the distributions impacts accuracy, sensitivity, and 

Table 6  The mean and middle 95% (2.5% quantile, 97.5% quantile) of the accuracy of the test as measured by the proportion of 
testing dataset observations correctly predicted when targeting a specificity of 0.995. The method(s) with highest accuracy in each 
scenario or equivalent after rounding are bolded

Abbreviations: MAD mean absolute deviation

Scenario A Scenario B

n=50 n=200 n=50 n=200

Prevalence=0.05

     Empirical 0.96 (0.93, 0.97) 0.96 (0.95, 0.97) 0.97 (0.93, 0.99) 0.98 (0.96, 0.99)

     Normal 0.95 (0.91, 0.97) 0.96 (0.93, 0.97) 0.97 (0.90, 0.99) 0.98 (0.95, 0.99)

     Log Normal 0.96 (0.93, 0.97) 0.96 (0.94, 0.97) 0.97 (0.93, 0.99) 0.98 (0.96, 0.99)

     MAD 0.90 (0.84, 0.95) 0.91 (0.87, 0.94) 0.86 (0.78, 0.93) 0.86 (0.81, 0.90)

     Log MAD 0.94 (0.89, 0.97) 0.95 (0.92, 0.97) 0.92 (0.83, 0.98) 0.93 (0.87, 0.97)

     Pareto 0.9 0.96 (0.94, 0.97) 0.96 (0.95, 0.97) 0.98 (0.95, 0.99) 0.99 (0.97, 1.00)
     Pareto 0.95 0.96 (0.93, 0.97) 0.96 (0.95, 0.97) 0.98 (0.94, 0.99) 0.98 (0.96, 0.99)

     Hybrid Empirical 0.96 (0.93, 0.97) 0.96 (0.95, 0.97) 0.97 (0.93, 0.99) 0.98 (0.96, 0.99)

     Hybrid Pareto 0.9 0.96 (0.93, 0.97) 0.96 (0.95, 0.97) 0.98 (0.94, 0.99) 0.99 (0.97, 1.00)
     Hybrid Pareto 0.95 0.96 (0.93, 0.97) 0.96 (0.95, 0.97) 0.98 (0.94, 0.99) 0.98 (0.96, 0.99)

Prevalence=0.30

     Empirical 0.85 (0.73, 0.95) 0.81 (0.73, 0.89) 0.95 (0.74, 0.99) 0.94 (0.77, 0.99)

     Normal 0.91 (0.81, 0.96) 0.91 (0.84, 0.96) 0.96 (0.90, 0.99) 0.97 (0.94, 0.99)

     Log Normal 0.88 (0.78, 0.96) 0.87 (0.81, 0.94) 0.97 (0.94, 0.99) 0.98 (0.96, 0.99)
     MAD 0.93 (0.88, 0.96) 0.93 (0.90, 0.95) 0.89 (0.84, 0.95) 0.90 (0.86, 0.93)

     Log MAD 0.92 (0.82, 0.96) 0.94 (0.88, 0.96) 0.94 (0.87, 0.98) 0.94 (0.90, 0.98)

     Pareto 0.9 0.81 (0.71, 0.95) 0.79 (0.73, 0.86) 0.95 (0.74, 0.99) 0.96 (0.87, 0.99)

     Pareto 0.95 0.82 (0.71, 0.95) 0.79 (0.73, 0.86) 0.94 (0.72, 0.99) 0.94 (0.78, 0.99)

     Hybrid Empirical 0.85 (0.73, 0.95) 0.81 (0.73, 0.89) 0.95 (0.74, 0.99) 0.94 (0.77, 0.99)

     Hybrid Pareto 0.9 0.82 (0.71, 0.95) 0.79 (0.73, 0.86) 0.95 (0.74, 0.99) 0.96 (0.87, 0.99)

     Hybrid Pareto 0.95 0.83 (0.71, 0.95) 0.79 (0.73, 0.86) 0.94 (0.72, 0.99) 0.94 (0.78, 0.99)
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prevalence estimates. If the distributions show consider-
able overlap, the accuracy is lowered, and a cutoff can-
not be selected that results in both a highly sensitive and 
highly specific test. We only generated data from two 
possible distributions and two possible sample sizes, so 
the results of our simulation study should be limited to 
this context. Considering the data analysis, the neutrali-
zation assay test we used to classify positive and negative 
controls is itself imperfect. The training dataset classifica-
tions in our data analysis could be incorrect, which would 
impact the cutoff estimates.

Because an emerging disease has potential cross-reac-
tivity and few true positives expected, we focus on meth-
ods for establishing cutoffs that target a high specificity 
[2]. However, in other applications, approaches that con-
sider both the sensitivity and specificity, as well as the rel-
ative costs of false positive and false negative results and 
the prevalence, may be preferred [25–28]. There are also 
hypothesis testing-based approaches found in the opti-
mal cutoff selection for patient segmentation literature 
focused on maximizing statistical power between the 
groups formed by the cutoff, while controlling the Type 
I error rate [29–31]. This is a distinct problem from esti-
mating high specificity cutoffs from a sample of validated 
negative controls, and as such, the methods presented 

here are not appropriate for this problem. When only 
estimating prevalence, some methods forgo establish-
ing a cutoff and instead fit a mixture model [32–36] or a 
latent class model [37–39] to the continuous test results. 
In some situations, training data may be continuously 
collected. Users may consider streaming algorithms for 
quantile estimation in these situations [40, 41].

Based on our simulation and data analysis, we recom-
mend using the Pareto methods or the empirical method 
to estimate the cutoff when developing tests, depend-
ing on the target specificity. The commonly used normal 
and MAD normal methods showed a larger bias in our 
simulations. The choice of target specificity of the cut-
off should account for the goals of the test. Higher target 
specificity is preferred when prevalence is very low and 
the objective is to identify cases, and lower target speci-
ficity is preferred if the goal is estimating prevalence.

Abbreviations
CDC	� Centers for Disease Control and Prevention
COVID-19	� Coronavirus disease 2019
RBD	� Receptor-binding domain
ELISA	� Enzyme linked immunosorbent assay
MAD	� Mean absolute deviation
RMSE	� Root mean squared error
SARS-CoV-2	� Severe acute respiratory syndrome coronavirus 2

Table 7  The mean and middle 95% (2.5% quantile, 97.5% quantile) of the accuracy of the test as measured by the proportion of 
testing dataset observations correctly predicted when targeting a specificity of 0.95. The method(s) with highest accuracy in each 
scenario or equivalent after rounding are bolded

Empirical and Pareto 0.95 cutoffs are equivalent when the target specificity is 0.95

 Abbreviations: MAD mean absolute deviation

Scenario A Scenario B

n=50 n=200 n=50 n=200

Prevalence=0.05

     Empirical 0.93 (0.86, 0.97) 0.94 (0.91, 0.97) 0.94 (0.86, 0.99) 0.95 (0.91, 0.98)

     Normal 0.93 (0.87, 0.97) 0.94 (0.90, 0.96) 0.94 (0.85, 0.99) 0.96 (0.90, 0.99)

     Log Normal 0.93 (0.87, 0.96) 0.93 (0.90, 0.96) 0.93 (0.84, 0.98) 0.93 (0.89, 0.97)

     MAD 0.85 (0.76, 0.92) 0.86 (0.81, 0.90) 0.80 (0.72, 0.88) 0.81 (0.76, 0.85)

     Log MAD 0.89 (0.81, 0.95) 0.90 (0.86, 0.94) 0.85 (0.75, 0.94) 0.85 (0.79, 0.90)

     Pareto 0.9 0.94 (0.88, 0.97) 0.95 (0.91, 0.97) 0.95 (0.87, 0.99) 0.97 (0.93, 0.99)
     Hybrid Empirical 0.93 (0.86, 0.97) 0.94 (0.91, 0.97) 0.94 (0.85, 0.99) 0.95 (0.91, 0.98)

     Hybrid Pareto 0.9 0.94 (0.88, 0.97) 0.95 (0.91, 0.97) 0.95 (0.86, 0.99) 0.97 (0.93, 0.99)
Prevalence=0.30

     Empirical 0.93 (0.84, 0.96) 0.94 (0.88, 0.96) 0.95 (0.89, 0.99) 0.96 (0.93, 0.98)

     Normal 0.93 (0.88, 0.96) 0.94 (0.92, 0.96) 0.95 (0.88, 0.99) 0.97 (0.92, 0.99)
     Log Normal 0.94 (0.90, 0.96) 0.94 (0.92, 0.96) 0.94 (0.88, 0.98) 0.95 (0.91, 0.98)

     MAD 0.89 (0.82, 0.94) 0.89 (0.86, 0.93) 0.86 (0.79, 0.91) 0.86 (0.82, 0.89)

     Log MAD 0.92 (0.86, 0.96) 0.92 (0.89, 0.95) 0.89 (0.82, 0.95) 0.89 (0.84, 0.93)

     Pareto 0.9 0.93 (0.85, 0.96) 0.94 (0.90, 0.96) 0.96 (0.90, 0.99) 0.97 (0.94, 0.99)
     Hybrid Empirical 0.93 (0.84, 0.96) 0.94 (0.88, 0.96) 0.95 (0.89, 0.99) 0.96 (0.93, 0.98)

     Hybrid Pareto 0.9 0.93 (0.85, 0.96) 0.94 (0.90, 0.96) 0.96 (0.90, 0.99) 0.97 (0.94, 0.99)
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