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Abstract 

Background  In the last decades, medical research fields studying rare conditions such as spinal cord injury (SCI) 
have made extensive efforts to collect large-scale data. However, most analysis methods rely on complete data. This 
is particularly troublesome when studying clinical data as they are prone to missingness. Often, researchers mitigate 
this problem by removing patients with missing data from the analyses. Less commonly, imputation methods to infer 
likely values are applied.

Objective  Our objective was to study how handling missing data influences the results reported, taking the exam-
ple of SCI registries. We aimed to raise awareness on the effects of missing data and provide guidelines to be applied 
for future research projects, in SCI research and beyond.

Methods  Using the Sygen clinical trial data (n = 797), we analyzed the impact of the type of variable in which data 
is missing, the pattern according to which data is missing, and the imputation strategy (e.g. mean imputation, last 
observation carried forward, multiple imputation).

Results  Our simulations show that mean imputation may lead to results strongly deviating from the underlying 
expected results. For repeated measures missing at late stages (> = 6 months after injury in this simulation study), car-
rying the last observation forward seems the preferable option for the imputation. This simulation study could show 
that a one-size-fit-all imputation strategy falls short in SCI data sets.

Conclusions  Data-tailored imputation strategies are required (e.g., characterisation of the missingness pattern, last 
observation carried forward for repeated measures evolving to a plateau over time). Therefore, systematically report-
ing the extent, kind and decisions made regarding missing data will be essential to improve the interpretation, trans-
parency, and reproducibility of the research presented.

Keywords  Missing data, Imputation, Spinal cord injury, Simulation study

†Sarah C. Brüningk and Catherine R. Jutzeler shared senior authorship.

*Correspondence:
Lucie Bourguignon
lucie.bourguignon@hest.ethz.ch
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-023-02125-x&domain=pdf
https://orcid.org/0000-0001-8049-6461
https://orcid.org/0000-0001-9307-0945
https://orcid.org/0000-0003-0931-0286
https://orcid.org/0000-0002-0899-9045
https://orcid.org/0000-0003-3226-9218
https://orcid.org/0000-0003-0136-8467
https://orcid.org/0000-0003-3176-1032
https://orcid.org/0000-0001-7167-8271


Page 2 of 15Bourguignon et al. BMC Medical Research Methodology            (2024) 24:5 

Introduction
In the era of big data, medical research fields are facing a 
data challenge. The surge of new mathematical and sta-
tistical methods promises to help understand the pro-
gression of patients’ recovery following a medical event, 
improve diagnosis and prognosis, thereby enhancing 
patients’ care. However, such models require sufficient 
data, preferable in the magnitude of thousands of entries, 
to identify recurring patterns and infer prediction rules. 
In a number of medical fields, such as the ones studying 
rare conditions (e.g., spinal cord injury [SCI]) or reha-
bilitation, the sample size available is typically smaller 
and further limited by the presence of missing data, 
with only a fraction of the overall data being available. 
With its low prevalence and particular recovery pattern 
(i.e., time of onset precisely defined followed by recov-
ery which plateaus between six to 12 months after initial 
event), traumatic SCI constitutes an ideal study case for 
missing data, which can be transferred to other medical 
fields. The last few decades saw the emergence of SCI 
datasets, such as the European Multicenter Study about 
Spinal Cord Injury (EMSCI) [1] or National Spinal Cord 
Injury Model Systems [2], including over 5000 and 50,000 
patients, respectively, partially filling the gap of data 
availability. However, these registries, like most medical 
data, are prone to missing entries (e.g., patients lost to 
follow-up, incomplete data entry, injury conditions mak-
ing it impossible to perform certain tests, different medi-
cation schemes etc.).

According to Rubin [3], missing data is categorized into 
three patterns, missing completely at random (MCAR), 
missing at random (MAR) and missing not at random 
(MNAR) (see Table  1). More precisely, MCAR refers to 
values, which are missing not only independently of their 
true unknown value, but also of the value of the other 
variables present in the data. In other words, data MCAR 
are equivalent to sampling a representative subset of 
the complete population. When data is MAR, a missing 
entry is not directly related to the underlying value, but 

related to other variables collected along with the varia-
ble in which missing data is observed, i.e., the proportion 
of missing entries differs between identifiable subgroups 
in the data. Finally, data are MNAR when the underlying 
missing value is directly related to the entry being miss-
ing. Previous studies have shown that MNAR could lead 
to biased interpretation of the results of statistical anal-
ysis [4–7]. Bias is defined as a deviation from the truth 
(e.g., either over- or underestimating an effect) which can 
lead to erroneous conclusions [8]. This phenomenon is 
important when dealing with medical data, as they are 
prone to data MAR and MNAR [9, 10].

Independent of the missing data pattern, incomplete 
reports often lead to the exclusion of patients as most 
mathematical models require so called “complete data”, 
effectively performing complete case analysis (CCA). 
This does not only represent a missed opportunity to 
benefit from the entire sample available, but can also 
lead to conclusions that are not representative of the 
entire population, and/or transferable to other popula-
tions. Despite those limitations, CCA is the most fre-
quent strategy applied when handling missing data in 
SCI registries, although the resulting limitations are 
not always explicitly acknowledged [11–13]. It has been 
shown that this strategy, when applied to other medical 
research questions, could introduce bias in the results 
reported [14, 15]. Beyond performing a complete case 
analysis, there exist multiple ways of handling miss-
ing data. Imputation, in particular, refers to the pro-
cedure of inferring likely values of the missing entries 
[16]. These strategies can be categorized into single or 
multiple imputation, which would infer one or multiple 
likely value(s), respectively. Likewise, imputation meth-
ods can consider only one variable (e.g., mean imputa-
tion) or multiple variables at a time (e.g., model-based 
imputation such as predictive mean matching [pmm]). 
Previous studies have reported better performances 
of multiple imputation compared to single imputation 
strategies when data was missing in a HIV cohort [17] 

Table 1  Missing data patterns. LEMS: lower extremity motor score

Pattern Definition Example

Missingness completely at random Values are missing independently of their true 
unknown value and independently of other variables

A LEMS value is missing for participant A with no under-
lying reason

Missingness at random Values are missing independently of their true 
unknown value but the pattern depends on other 
variables

A LEMS value is missing for participant A because they 
had a cast at the time of assessment, i.e. knowing 
the cast status gives information on whether LEMS value 
will be missing or not

Missingness not at random Having a value missing depends on the true unknown 
value

A LEMS value is missing for participant A because their 
injury was so severe that they could not come for 
the assessment, i.e. the underlying true LEMS gives infor-
mation on whether LEMS value will be missing or not
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or in oncogene expression profiles  [18]. Those results 
are in line with the underlying motivation for multiple 
imputation. Having multiple plausible imputed values 
allows to take into account the uncertainty when esti-
mating missing values. On the other hand, single impu-
tation might impute falsely precise values [16].

A particularity of traumatic SCI disease progression 
is that patients to some extent recover with time. Most 
of the recovery takes place in the first 6 months after 
injury followed by a plateau between six and 12 months 
after injury [19]. The recovery is characterized by non-
linear and highly heterogeneous recovery patterns. 
Owing to a scarcity of studies, the effect of missing data 
and imputation is not well understood for SCI datasets. 
Importantly, other medical scenarios involving repeated 
measures may show a similar plateau in the evolution 
of variables over time (e.g., observational studies char-
acterising recovery in rehabilitation centers following 
stroke [20] or traumatic brain injury [21], partial recov-
ery following relapses in multiple sclerosis [22]).

To address this knowledge gap, we designed a simula-
tion study characterizing the impact of three key param-
eters on the results reported, namely the variable in 
which data is missing, the pattern of missingness, and 
finally the imputation strategy applied. Firstly, consider-
ing the recovery pattern following SCI, we hypothesized 
that performing an imputation by last observation car-
ried forward (LOCF) for the outcome variable evaluated 
at week 52 would not significantly affect the models’ out-
comes. However, we expected that carrying an observa-
tion from earlier time points (e.g., 16 weeks post injury) 
would introduce bias in the interpretation of a model 
owing to the non-linearity of the recovery trajectory. Sec-
ondly, we suspected that, while CCA is an efficient and 
unbiased way of handling missing data when it is MCAR, 
it would introduce bias when data is MAR or MNAR in 
the field of SCI as well. When data is MAR or MNAR, 
we hypothesized that multiple imputation strategies, 
which consider the uncertainty in the imputation pro-
cess, would outperform ad-hoc and single imputation 
strategies. Finally, we hypothesized that mean imputa-
tion is not a suitable strategy to handle missing SCI data, 
regardless of the missingness pattern, since the assump-
tion of normally distributed data is not met for many 
SCI-related outcomes, such as the lower extremity motor 
score (LEMS).

Overall, our study evaluates extensively the impact of 
missingness on the analysis of medical data, taking the 
example of SCI. Using data from the Sygen clinical trial, 
a well established SCI data source, provides an opportu-
nity to reconsider the importance of missing data when 
studying SCI data and beyond.

Methods
Data source
Sygen cohort
The Sygen project was a multicenter, randomized, double-
blinded clinical trial conducted between 1992 and 1998 in 
the United States, to evaluate the effect of GM-1 ganglio-
side on recovery following acute SCI [23–25]. Failing to 
demonstrate superiority over placebo in terms of recovery 
following SCI, the Sygen study has emerged as a valuable 
data source for research projects owing to the diligent 
data collection and the size of the cohort, which is con-
siderably larger than many contemporary cohorts [26]. All 
enrolled patients were treated with methylprednisolone 
sodium succinate (MPSS) according to the NASCIS II 
protocol as part of the standard of care [27]. The design of 
this clinical trial included the assessment of neurological 
status at predefined time points. A baseline measurement 
(before 72 hours from injury and after the competition of 
the NASCIS II [28]), 4, 8, 16, 26, and 52 weeks following 
injury. The delayed baseline exam was centered around 
48 hours after injury. This time delay in baseline exam 
allowed a complete neurological examination, also con-
sidering any recovery from hemodynamic normalization 
occurring between the emergency room and 48 hours 
after injury. Among other variables, neurological level of 
injury (NLI), motor scores (lower extremity [LEMS] and 
upper extremity [UEMS] motor scores), sensory scores 
(pin prick and light touch) [29] and the American Spinal 
Injury Association (ASIA) Impairment Scale (AIS) [30] 
were reported. Overall, the cohort includes 797 partici-
pants, with a majority of severe injuries (AIS A, 56%).

Simulation study
We conducted a simulation study where missing values 
were artificially introduced in data otherwise complete. 
We assessed three key characteristics of the missing data: 
the type of variable in which data is missing (i.e. outcome 
versus explanatory variable), the patterns of missingness 
and the imputation strategy. We summarized the simula-
tion study in Fig. 1.

Definition of the bootstrap subsets
We first selected all patients, who had data for LEMS at 
delayed baseline exam (referred to as “baseline”) stage 
and chronic/52 weeks stage (referred to as “chronic”), as 
well as AIS grade, NLI, sex and age at baseline. To emu-
late a plausible research hypothesis, we considered the 
following model:

where we intended to study the association between 
LEMS at the chronic stage (outcome variable) and LEMS 

(1)
LEMSchronic ∼ LEMSbaseline + AIS gradebaseline + NLI + age + sex



Page 4 of 15Bourguignon et al. BMC Medical Research Methodology            (2024) 24:5 

at baseline (explanatory variable), taking into account 
potential confounders, such as the AIS grade, NLI, age, 
and sex at baseline. Note, for simplicity LEMS scores 
were considered to be continuous scores and NLI a 
binary variable, taking either the value “cervical” or “tho-
racic”. Patients with lower injuries (i.e., at and below L1) 
were excluded in the original study [23].

In order to assess how variable the effects of missing 
data and data imputation are, we performed a bootstrap 
sampling with replacement to create 500 bootstrap sub-
sets (n = 500 entries for each) with fixed AIS grade dis-
tributions (Fig. 1A). The distributions followed either the 
original AIS grade distribution from the complete Sygen 
data for the variables of interest, or with balanced AIS 
grade groups (25% of grade A, B, C and D in the final 
cohorts, AIS grade E was not included as this category is 
not present in the original study [23]).

Introduction of missing data
In each bootstrap subset, we introduced 30% missing 
values in two of the variables, namely LEMS at chronic 
stage and LEMS at baseline (Fig. 1B). This percentage was 

chosen based on the percentage of missing data observed 
in the Sygen cohort (24.1%) and was set to a higher, more 
conservative percentage. In this study, we focused on 
simulations in which missing data would be introduced 
in one variable at a time, whilst the rest of the variables 
would be complete, as a way to simplify the task at hand. 
The choice of these variables was motivated by their dif-
ferent status in the example model (outcome and explan-
atory, respectively).

Missing values were introduced according to three pat-
terns: MCAR, MAR, and MNAR as described in Rubin 
in 1976 [3]. For modeling MCAR, if LEMS at baseline is 
missing for a specific patient, the missing value would be 
unrelated to all other variables, including the outcome 
variable LEMS at chronic stage (i.e., 52 weeks after injury). 
As such, disregarding those entries should not introduce 
bias, provided a sufficient sample size [31]. In the case 
of values MAR, information about the missing value can 
be retrieved by studying the other variables. To simulate 
this behavior values MAR were introduced depending 
on the variable sex, where being male made it twice more 
likely to have a value missing, compared to being female. 

Fig. 1  Simulation study overview. A The first step leads to the definition of 500 bootstrap subsets, with n = 500 in each subset; B In each bootstrap 
subset, 30% missing data is introduced in the variable for lower extremity motor score (LEMS) (either at baseline or at recovery) according 
to one of the three patterns of missingness (missing completely at random [MCAR], missing at random [MAR], missing not at random [MNAR]), 
independently, before being imputed. Empty circles represent missing entries, while plain circles represent known values; AIS: American spinal 
injury association impairment scale
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Finally, MNAR is a pattern, in which the unknown true 
value influences whether the value is missing or not. In 
this study, we simulated that patients with less severe inju-
ries would be more likely to be missing. Specifically, high 
LEMS (i.e. above the LEMS 30th percentile) were four 
times more likely to be missing compared to low LEMS 
(i.e. below the LEMS 30th percentile). The four times dif-
ference reflects the four AIS grade categories (from A to 
D), closely related to the LEMS [32]. The 30th percen-
tile threshold was chosen to match the 30% missing data 
introduced, easily allowing for a change in percentage of 
missing data introduced in future studies.

Imputation strategies
The introduced missing values were imputed with three 
types of procedures: ad-hoc methods, single imputations 
and multiple imputations.

Ad-hoc methods included mean imputation [33] and 
last observation carried forward (LOCF) [34]. The lat-
ter was used for imputation of the outcome variable 
only (LEMS at chronic stage), where missing data were 
replaced by LEMS assessed 26 weeks after injury. Intend-
ing to test the time sensitivity of the LOCF, we repeated 
the analysis using LEMS at 26 weeks as the primary out-
come variable, and imputed it using LEMS available at 
week 16. We hypothesized, based on the recovery profile 
following SCI [19], that LOCF from week 26 to chronic 
stage would be more relevant than LOCF from week 16 
to week 26, where a substantial amount of recovery is 
still likely to occur. We focused our analyses on outcomes 
measured at week 26 and week 52 after initial injury as 
they are the reference timepoints used in clinical trials to 
assess recovery following SCI [23, 35].

Single imputation consisted of three main steps: (1) 
taking the set of patients, which are not missing for a 
defined variable; (2) fitting a model to describe this vari-
able according to all others; and (3) predict likely val-
ues for the missing ones, based on the fitted model. For 
example, if one imputes missing LEMS score at baseline, 
the fitted model would be:

Note that we excluded the outcome variable as it rep-
resents information that is not available at baseline. Dif-
ferent models can be used to fit the data available for 
imputation. In this simulation study, we focused on lin-
ear regression (LR) [36], k-nearest neighbors (k-NN) [37], 
and support vector machines (SVM) [38] using two types 
of kernel (linear and radial basis function [RBF]) and ran-
dom forest (RF) [39], as they represent a commonly used 
set of machine learning models for prediction tasks [40]. 
All models included a 5-fold cross-validation scheme 

(2)
LEMSbaseline ∼ AIS gradebaseline + NLI + age + sex

for hyperparameter optimization. The corresponding 
parameter grids can be found in Additional file 1.

Single imputation is inherently limited as it does not 
provide uncertainty related to the imputed value. Multi-
ple imputation addresses this challenge: the imputation 
is performed multiple times (25 times here, as a com-
promise between increased power and reasonable run 
time [41]) before being pooled. Similarly as for single 
imputation, the outcome variable was excluded from the 
imputation of the explanatory variable. Models includ-
ing predictive mean matching (pmm), linear regression 
imputation (norm.predict) and tree-based method (ran-
dom forest, rf ) were chosen, as implemented in the R 
mice package [42]. Models for multiple imputation were 
chosen to match the models used in the single imputa-
tion with the aim to increase the comparability between 
the two approaches.

Based on our study design, we chose to pool the data 
before fitting the example model featured in Eq. (1), with 
the final imputed value being the mean of all imputed 
values for the LEMS continuous variables [43]. This 
approach was taken in order to obtain a single imputed 
value for each missing entry to allow for the computation 
of metrics (see Metrics). However, it does not match the 
flow advocated in the implementation for multiple impu-
tation as presented in the R mice package. In order to 
ensure that this change in procedure does not impair the 
outcome of the multiple imputation, we compared both 
approaches in the Additional file 2.

Finally, we performed a CCA, where any patient (case) 
with at least one missing value among the variables 
described in the section Definition of the bootstrap sub‑
sets would be disregarded and the analysis performed 
solely using patients for whom the entire set of variables 
was observed.

All imputation strategies were compared to their cor-
responding bootstrap subset when complete, designated 
as baseline subset.

Evaluation of data imputation
Following imputation, we sought to evaluate and com-
pare the different imputation strategies tested. We 
employed various methods to both examine population- 
(i.e., statistical tests, beta coefficient comparisons) and 
individual-level (i.e., metrics) performance of imputation 
methods in restoring the missing entries.

Statistical tests

Two‑sample Kolmogorov‑Smirnov test  We tested the 
null hypothesis considering that the two sets of obser-
vations were drawn from the same unknown probability 
distribution, using a two-sample Kolmogorov-Smirnov 
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test [44], as implemented by the ks.test function in the 
stats R package. The two sets of observations considered 
were either the variable before and after introducing the 
missing values, or the variable before introducing the 
missing values compared with the variable after imputa-
tion, or the variable after introducing missing values and 
the variable after imputation. Note that in a typical impu-
tation situation, true values are not available, and thus 
only comparison between the set of non-missing values 
and the set of values after imputation would be possible.

Chi‑squared goodness of fit test  The chi-squared good-
ness of fit test, chisq.test in R, was employed to com-
pare the proportion of categorical variables between two 
cohorts. Its null hypothesis states that the sample to be 
tested follows the hypothesized distribution from the 
other cohort.

Little’s test  Little’s test was first described in 1988 [45]. 
It tests the null hypothesis that data is missing com-
pletely at random in a given cohort. In our framework, 
the mcar_test function, implemented in the naniar R 
package [46], first allowed us to ensure that the missing 
data was introduced as intended, i.e., MCAR or not (Sec-
tion 3.1.2), and was further used to describe the missing-
ness in the original Sygen cohort (Section 3.3).

Metrics  We used the following metrics for a quantita-
tive comparison of variables, continuous and categori-
cal, in their complete version versus after imputation. All 
imputation methods were subsequently ranked to deter-
mine, for each metric, which imputation method would 
consistently lead to imputations closer to the true values 
across repeated runs.

Mean absolute error (MAE)  The MAE computes the 
average absolute difference between a known true value  
and its corresponding imputed version  for all  entries  
for which missingness was introduced:

MAE is a negatively-oriented score, which means lower 
values indicate better imputation performance. This met-
ric has the advantage of being intuitively interpretable as 
it is expressed in the units of the variables, i.e., a MAE 
of 3.5 for LEMS at baseline would mean that, on average, 
the imputed values for LEMS missing at baseline are 3.5 
points away from their true values.

Root mean squared error (RMSE)  The RMSE differs 
from the MAE as it squares the difference between true 

(3)MAE =
1

n

n
∑

i

|yi − ŷi|

and imputed values, thus penalizing large errors more. 
By taking the square root of the overall average of differ-
ences, it allows one to interpret the RMSE on the scale of 
the initial values, similarly to the MAE. Likewise, a RMSE 
of 0 corresponds to the best possible imputation.

Comparison of beta coefficients after linear regression (LR) 
using imputed data
The last method we employed to assess the quality and 
impact of imputation was to fit a linear regression (LR) 
based on the simulated research question stated in Eq. 
(1) and compare the beta coefficients for the explanatory 
variables estimated from a LR based on the complete set 
of data and the imputed data. This method allowed us to 
highlight the difference in the conclusion drawn from a 
research question according to its study design regard-
ing the way to handle missing data. We considered the 
95% confidence interval (CI) and mean difference in beta 
coefficients for each explanatory variable (i.e., LEMS at 
baseline). For an imputation method to be considered 
unbiased, the CI should include the value 0 (i.e., it is likely 
that the true difference between the beta coefficients is 
negligible) and be as small as possible.

For all tests, the threshold of p < 0.05 was considered 
significant and led to rejecting the corresponding null 
hypothesis. Analyses were performed with R Statistical 
Software (version 3.6.0) and Python (version 3.7.4).

Results
Description of the data
Full cohort and selected complete case cohort from the Sygen 
trial
Summary statistics of the variables of interest for our 
simulation study are presented in Table 2. After includ-
ing only complete cases for the variables of interest, the 
cohort was reduced from 797 to 546 patients. Compar-
ing the two cohorts did not yield significant differences 
in terms of the proportion of sex (chi-squared test, 
X-squared = 0.66, df = 1, p-value = 0.42), age (two-sam-
ple Kolmogorov-Smirnov test, D = 0.02, p-value = 0.99), 
level of injury (chi-squared test, X-squared = 0.25, df = 1, 
p-value = 0.62) or LEMS at baseline and at recovery (two-
sample Kolomogorov-Smirnov test, D = 0.01, p-value = 1, 
for both variables). When comparing the proportions 
of AIS grades and considering missing data as a cat-
egory in itself, which would not be present by design in 

(4)RMSE =
1

n

n

i

(yi − ŷi)2
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the cohort with only complete data, a significant differ-
ence is reported between the two cohorts (chi-squared 
test, X-squared = 73.96, df = 4, p-value < 0.001). Since this 
difference is likely to be driven by the additional miss-
ing category, we performed the same test using only the 
actual grades available. It revealed no significant differ-
ence in the proportions of each grade between the two 
cohorts (X-squared = 0.84, df = 3, p-value = 0.84).

Subsets from the cohort of complete cases
Variables of interest are summarized for every AIS 
grade distribution in Table  3. Each value is reported as 
the mean of the variable’s values across the 500 subsets 
drawn according to the same AIS grade distribution as in 
the cohort with complete cases from the Sygen data, or 
with balanced AIS grade groups.

In order to test whether the missing data were intro-
duced as intended (i.e., following MCAR, MAR and 

MNAR patterns, respectively), we performed a Lit-
tle’s test for each subset and for each variable in which 
missing data was introduced, separately. As expected, 
the null hypothesis, stating that the data is MCAR, is 
mostly rejected when missingness is introduced at ran-
dom or not at random (range: 491–500 subsets out 
of 500, Additional  file 3). When missingness is intro-
duced completely at random, it is expected that the null 
hypothesis would be rejected in 5% of the 500 subsets 
since we defined our significance threshold to be less 
than 0.05. That represents a 5% probability that the 
null hypothesis, whilst being correct, is rejected. This 
expectation matches the observation across subsets in 
which missingness was introduced completely at ran-
dom, with the null being rejected in 26 (5.2%) and 32 
(6.4%) bootstrap subsets, depending on the AIS distri-
bution (Additional file 3). Overall, this step allows us to 

Table 2  Characteristics of the Sygen cohort for the variables of interest, before and after selecting for complete cases

LEMS lower extremity motor score, AIS American Spinal Injury Association Impairment Scale, NA not available (missing data), SD standard deviation, Q1 first quartile, 
Q3 third quartile; continuous variables (LEMS and age) were compared using a two-sample Kolmogorov-Smirnov test, categorical variables (sex, level of injury and AIS 
grade) were compared using a chi-squared goodness of fit test

Entire cohort Complete cases only p-value

Number of patients n 797 546

Sex 0.42

n (% male) 643 (80.7) 433 (79.3)

NA, n (%) 0 (0.0) 0 (0.0)

Age 1

mean (SD) 32.5 (13.4) 32.00 (13.3)

NA, n (%) 0 (0.0) 0 (0.0)

LEMS at week 01 1

mean (SD) 2.7 (7.2) 2.7 (7.1)

median [Q1-Q3] 0 [0–0] 0 [0–0]

NA, n (%) 74 (9.3) 0 (0.0)

LEMS at week 26 1

mean (SD) 12.1 (18.7) 11.9 (18.9)

median [Q1-Q3] 0 [0–29] 0 [0–28]

NA, n (%) 168 (21.1) 27 (4.9)

LEMS at week 52 1

mean (SD) 12.8 (19.3) 12.6 (19.3)

median [Q1-Q3] 0 [0–32] 0 [0–31]

NA, n (%) 192 (24.1) 0 (0.0)

Level of injury 0.62

Cervical, n (%) 600 (75.3) 406 (74.4)

Thoracic, n (%) 197 (24.7) 140 (25.6)

AIS grade 0.84

A, n (%) 446 (56.0) 356 (65.2)

B, n (%) 77 (9.7) 59 (10.8)

C, n (%) 149 (18.7) 108 (19.8)

D, n (%) 31 (3.9) 23 (4.2)

NA, n (%) 94 (11.8) 0 (0.0) < 0.001
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assume that the missingness patterns were introduced 
appropriately.

Following the introduction of the missing data, we eval-
uated the impact of the missing data on the distribution 
of the variable in which it was introduced. When tested 
with the two-sided Kolmogorov-Smirnov test, introduc-
ing MCAR and MAR did mostly not significantly change 
the distributions of the two variables (LEMS at baseline 
and recovery) (Additional  file  4). By contrast, introduc-
ing MNAR introduced a shift in the distribution of the 
variables for the majority (500 and 305/500 when AIS 
grade distribution follows the complete Sygen data’s dis-
tribution and a balanced AIS grade distribution, respec-
tively) of the bootstrap subsets. Introducing MNAR in 
LEMS at recovery in a population where the proportions 
of AIS grades are balanced (25% for each group), was an 
exemption to that observation. In this particular case, the 
null hypothesis of the two-sided Kolmogorov-Smirnov 
test, stating that the values of LEMS at recovery before 
and after introducing MNAR were drawn from the same 
underlying population, was rejected for 305 subsets out 
of 500. In comparison, it was rejected for all subsets in a 
similar population AIS grade distribution, when missing-
ness was introduced at random.

Performance of imputation methods
Statistical tests
The results comparing the distributions of the true 
and imputed values after introducing missing data are 

summarized in Additional files 5 and 6. While introduc-
ing data MCAR or MAR did not lead to significant shifts 
in distributions (see Section 3.1.2), we observed that the 
imputation methods introduced shifts irrespective of 
the underlying AIS grade distribution in the population 
or the variable with missing entries. Similarly, we noted 
that across variables, underlying AIS grade distributions 
in the samples and missingness patterns, the majority or 
mean imputation systematically shifted the distribution 
of the imputed variable.

When data was MNAR, the distributions of the result-
ing population were often significantly different from the 
initial population (from 305 to 500 out 500 subsets, Sec-
tion  3.1.2 and Additional file  4). Following imputation, 
this shift was more likely to be reversed as the underlying 
population structure approached balanced proportions 
in AIS grades (e.g., 150 versus 295 subsets out of 500 
had a significantly different population distribution after 
imputation with multiple random forest when data is 
MNAR in LEMS at baseline, Additional file 5). The impu-
tation method that led to the least number of subsets in 
which a shift was still observed was imputation using a 
RF (simple imputation, four subsets when data MNAR, 
Additional file 5), followed by pmm (multiple imputation, 
14 subsets when data MNAR, Additional file  5) for the 
LEMS at baseline. One exception arose when missingness 
was introduced in the outcome variables, LEMS at the 
chronic stage, where imputation with LOCF led to sam-
ple distributions that were never significantly different 

Table 3  Characteristics of the 500 bootstrap subsets (500 entries each) created according to the AIS grade distributions present in 
the Sygen cohort including only complete cases for the variables of interest, and a balanced cohort, where all 4 grades are present in 
equal proportions

LEMS lower extremity motor score, AIS American Spinal Injury Association Impairment Scale, SD standard deviation, CI confidence interval

Outcome at week 52 Sygen complete cases (subsets) Balanced (subsets)

Number of patients n 500 500

Number of male mean (SD) 396.8 (8.6) 385.5 (9.2)

Age [years] mean (SD) 32.0 (13.3) 34.2 (14.0)

LEMS at week 01 mean (SD) 2.7 (7.0) 8.5 (12.1)

median [95% CI] 0 [0–0] 0 [0–0]

LEMS at week 26 mean (SD) 11.9 (18.8) 25.6 (21.5)

median [95% CI] 0 [0–0] 34 [33–34]

NA, n 24.9 (5.2) 22.8 (4.6)

LEMS at week 52 mean (SD) 12.6 (19.3) 26.2 (21.7)

median [95% CI] 0 [0–0] 35 [35–36]

Level of injury cervical, mean (SD) 372.3 (9.8) 412.7 (8.4)

thoracic, mean (SD) 128.7 (9.8) 87.3 (8.4)

AIS grade A, n (%) 325 (65.0) 125 (25.0)

B, n (%) 55 (11.0) 125 (25.0)

C, n (%) 100 (20.0) 125 (25.0)

D, n (%) 20 (4.0) 125 (25.0)
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from the true population (Additional file 6). This obser-
vation also held true when the outcome variable was 
measured 26 weeks after injury and imputation was based 
on data collected 16 weeks after injury (Additional file 7). 
However, when both LEMS at chronic stage and week 26 
were missing, LOCF could not be performed and led to 
the exclusion of a mean of 6.8 (standard deviation: 2.5), 
6.8 (standard deviation: 2.5) and 6.5 (standard deviation: 
2.6) entries per bootstrap subset, when LEMS at chronic 
stage was MCAR, MAR and MNAR, respectively.

Metrics
Testing for difference in distributions is equivalent to 
looking at the performance of the imputation at a popu-
lation level. It is, however, also interesting to see at the 
scale of the individual imputed values how the imputa-
tion performs. For that purpose, we computed various 
metrics (Methods) to quantify the agreement between 
individual imputed values and their true counterpart, 
across bootstrap subsets.

Two main observations were similar to the ones 
obtained when comparing imputation methods at the 
population level by means of statistical tests. Firstly, 
LOCF was the imputation method leading to the lowest 
MAE and RMSE, when imputing the outcome variable 
evaluated at week 52 (Fig.  2A). When the outcome was 
measured at week 26 after injury, LOCF was still consist-
ently among the top four imputation methods but was 
outperformed by pmm (Fig.  2B). Secondly, mean impu-
tation led to the lowest ranked metric values in most of 
the scenarios, regardless of the other three parameters 
to be studied in this simulation (i.e., AIS grade distribu-
tion, missingness patterns, variables to be imputed, Addi-
tional  files  8 and 9, Fig.  2). Multiple imputation, on the 
contrary, was always ranked the highest (following LOCF 
if present), across all metrics, with a slight advantage 
to pmm and norm.predict (ranked in the top two, after 
LOCF, in all the simulations) over multiple RF (ranked 
third, or fourth when LOCF is present, in over 90% of the 
simulations), when imputing LEMS variables (Fig. 2). We 
also observed that the distribution of the metrics values 

Fig. 2  Imputation methods ranked from lowest (1) to highest (9 or 10) metrics’ values when introducing missing data not at random in A. 
LEMS at outcome considered at week 52. B LEMS at outcome considered at week 26. C LEMS at baseline. For each subset (n = 500), missing 
data is introduced and imputed using all methods. Within each subset, imputation performance is compared between imputation methods 
and ranked from best performance (i.e., closest to 0 and ranked 1) to lowest performance (i.e., highest metric value and ranked 9 or 10). We display 
the proportion of subsets (out of 500) per rank and imputation method; LEMS: lower extremity motor score, MAE: mean absolute error, RMSE: root 
mean squared error, SVM: support vector machines, RBF: radial basis function
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were less variable with multiple imputation when repeat-
ing the process in 500 bootstrap subsets compared to the 
single imputation methods (standard deviation of distri-
bution of MAE when LEMS at chronic stage MAR: 0.97, 
0.71, 0.24 and 0.21 when imputed using k-nearest neigh-
bors, linear regression, pmm and norm.predict, respec-
tively, Additional file 9).

Comparison of beta coefficients after linear regression (LR) 
using imputed data
As shown in Fig. 3, mean imputation for LEMS missing 
at baseline consistently introduced a bias in coefficients 
estimated via linear regression, with the magnitude of 
the bias increasing from data MCAR to MAR to MNAR 
(mean difference between estimates of beta for LEMS at 
baseline of − 0.33, − 0.35, and − 0.50 when data MCAR, 
MAR and MNAR, respectively). In contrast, bias would 
not be introduced when performing a CCA, i.e. zero 

would also be present in the CI. This imputation method, 
however, led to wide CIs in the difference between coeffi-
cients estimated on the entire data versus on the imputed 
data (e.g. when estimating the effect of AIS grade D in 
comparison with AIS grade A, 95% CI of [− 6.5; 5.3], 
[− 5.8; 6.6] and [− 30.1; 13.1] for data MCAR, MAR and 
MNAR, respectively). Taken together, Fig.  3 supports 
the use of multiple imputation methods such as pmm 
and norm.predict in imputing missing LEMS at baseline, 
as those methods did not introduce bias and resulted in 
smaller CI, especially with data MNAR ([− 17.9; 13.5] 
for estimates of the effect of AIS grade D in compari-
son with AIS grade A). When imputing missing LEMS 
at week 52, LOCF produced estimates of beta that were 
both unbiased and close to the estimates derived from 
the entire data (Additional  file  10). If the outcome is 
evaluated at week 26, imputation of missing data using 
LOCF uses information available at week 16. Despite 

Fig. 3  Mean and confidence interval of the difference between estimates from the data before introducing missingness in LEMS at baseline 
and after imputation. Each row corresponds to missing data being introduced using a different missingness pattern (MCAR, MAR and MNAR 
from top to bottom). Each column corresponds to the estimate of one explanatory variable (LEMS at baseline, AIS B compared to AIS A, AIS C 
compared to AIS A and AIS D compared to AIS A, from left to right). Intervals displayed in red do not contain the value 0. MCAR: missing completely 
at random, MAR: missing at random, MNAR: missing not at random, LEMS: lower extremity motor score, AIS: American Spinal Injury Association 
Impairment Scale, k-NN: k-nearest neighbors, SVM: support vector machines, RBF: radial basis function
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using information from an earlier time in the recovery 
process, it appears to still be the most reliable imputa-
tion method with no bias introduced, except when data 
is MNAR. In that case, although the estimates repeat-
edly deviated from the expected ones, the bootstrap CI 
is tight compared to CI obtained with other imputation 
methods ([− 2.5; − 0.3] and [− 3.1; − 0.5] for the esti-
mates for AIS B and C versus AIS grade A, respectively, 
Additional file 11).

Application of studying missing values to real‑world data
As presented in Table 2, the full Sygen cohort (n = 797) 
presents missing entries for LEMS at both time points 
and AIS grade at week 1, when taking into account the 
variables studied in our example model. Sex, age and 
NLI, however, had no missing data. Additional  file  12 
illustrates the co-occurrence of missing data across the 
variables considered. The hypothesis of the data being 
MCAR was rejected when taking all the variables of the 
model together (Little’s test, statistic = 76.4, df = 44, num-
ber of missing patterns = 8, p-value = 0.002). The variable 
with most missing entries, LEMS evaluated at week 52, 
presents with 24.1% missing data, making our simulation 

with 30% missing data more conservative. Notably, both 
LEMS at week 52 and 26 were missing for 136 (17.1%) 
participants. It is important to highlight that this subset 
could not benefit from a reliable imputation based on the 
LOCF strategy. However, 56 participants (7.0%) could 
be included in such an analysis by imputing the missing 
outcome variable using the LOCF strategy. For the par-
ticipants in which either LEMS or AIS grade at baseline 
was missing, imputation could be envisaged, preferably 
through multiple imputation. General consideration on 
how to apprehend missing data, both based on knowl-
edge from the literature and results from the simulation 
study described here, are presented in Fig. 4.

Discussion
In this simulation study, we aimed to address the impact 
of missing data in SCI data sources on the results 
reported. We specifically focused on three key compo-
nents that could affect the analysis itself and the inter-
pretation of the results: the type of variable in which 
data is missing, the pattern in which the data is missing 
(i.e., MCAR, MAR, MNAR), and the imputation strategy 
applied.

Fig. 4  General consideration when facing missingness in medical data



Page 12 of 15Bourguignon et al. BMC Medical Research Methodology            (2024) 24:5 

In agreement with reports from other medical 
fields [4, 47, 48], we showed that data MNAR is more 
likely to lead to biased subsequent analysis as it might 
change the distribution of the data available for analy-
sis (Additional file 4). Likewise, disregarding the pres-
ence of data MNAR by performing an analysis based 
on complete cases can also lead to erroneous conclu-
sions compared to an analysis that would have been 
performed on the entire sample with no missing data 
(Fig.  3) considering the large CI of the difference 
between the true estimate and the estimate obtained 
from the imputed data. This point is particularly cru-
cial as most studies currently perform complete case 
analysis [49–52], and we reported absolute effect sizes 
greater than 5 (when MNAR and considering AIS D or 
C compared to A), surpassing the threshold of 5 points 
considered as clinically significant for LEMS [53]. 
It could also not be excluded that data was MNAR 
in the Sygen data (Section  3.3). The latter is likely to 
hold true in most SCI datasets (EMSCI database [26]) 
owing to the nature of the data itself (i.e., observa-
tional medical data). When dealing with MNAR, CCA 
did not consistently lead to the introduction of bias in 
the estimates of beta coefficients, contradicting our 
initial hypothesis. We observed, however, that multiple 
imputation strategies, in particular pmm and norm.
predict equally led to unbiased estimates but with 
narrower CIs, suggesting a lower variance in the esti-
mates. Similarly, multiple imputation methods were 
more likely to generate distributions closer to the ini-
tial true distribution. Taken together, it seems that, for 
this cohort, handling MNAR with multiple imputation 
would be more appropriate than to use CCA.

While LOCF is only possible in the case of variables 
being observed at multiple time points and may not be 
appropriate for other medical outcomes [54, 55], our 
study supports the use of this imputation for SCI-related 
outcomes such as the LEMS. We were able to show that 
performing LOCF from week 26 to week 52 leads to a 
population similar to the true underlying population in 
terms of distribution (Additional file 7), individual values 
imputed (Metrics) and estimated beta coefficients from 
the LR model (Additional file  9). This is likely attribut-
able to the very characteristic recovery trajectory of SCI, 
including a plateau starting six to 12 months after the 
initial injury. Contrary to our initial expectation, this 
observation still held true when performing LOCF from 
week 16 to week 26 (Additional  file  10). However, it is 
important to note that this conclusion might be specific 
to outcomes with this particular recovery trajectory, and 
might not be transferable to outcomes where no plateau 
can be observed (both SCI-related or unrelated out-
comes). LOCF is also a well suited imputation method 

for outcome variables as it only relies on data that will 
be further used at a later stage of the data analysis or 
modeling process. This effectively prevents introducing 
circularity, which in turn improves the potential transfer-
ability of the reported results to a clinical setting. How-
ever, it should be noted that in longitudinal studies, one 
may take advantage of the repeated measures and ana-
lyze the entire recovery trajectory rather than the mere 
association between baseline and chronic measures. In 
such cases, likelihood-based methods (e.g., mixed-effects 
models) would be advantageous. Indeed, they inherently 
allow for MCAR and MAR, or specification of the joint 
distribution between the data present and missing data 
when data is MNAR, thus not requiring imputation [56].

Limitations
It is important to note that the interpretation of this 
study might be limited by a few factors. Firstly, we stud-
ied imputation for repeated measures in the context of 
SCI using LOCF considering carrying forward informa-
tion from week 26 to week 52, and from week 16 to week 
26. However, we have not explored whether carrying for-
ward values from earlier timepoints (e.g., week 4 or 8) 
would lead to equally reliable imputed values. Addition-
ally, the exact time points to consider for a valid LOCF 
will depend on the spacing between repeated measures 
available and the expected trajectory and timeframe of 
the variable of interest. Secondly, we restricted our anal-
ysis to a fixed amount of missing data (i.e., 30%). This 
percentage was chosen based on the actual percentages 
of missing data observed in the variables studied in the 
original data used and was fixed to a higher percentage 
to be more conservative while being able to compare 
our results across variables. Thirdly, we only investigated 
continuous variables. Dealing with missing data in cat-
egorical variables (e.g., AIS grade, assessing SCI severity) 
would require the use of other models (e.g., proportional 
odds logistic regression for multiple imputation) and 
give rise to specific challenges (e.g., how to impute a 
category that is not present in the data but theoretically 
possible). Additionally, we did not consider self-reported 
variables, which missingness can carry information and 
should therefore be studied beyond imputation [57, 58]. 
These points have not been explored as a means to limit 
the complexity of our primary analysis, but constitute 
the starting point of future work. Finally, we focused 
on missing data being present in one variable at a time, 
i.e., univariate imputation. Investigating the multivari-
ate missing data problem poses additional challenges, 
including but not restricted to combining different miss-
ingness patterns, introducing circularity when imputing 
outcomes based on explanatory variables, or potentially 
masking meaningful information from the co-occurrence 
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of missing entries. In such cases, imputation strategies 
can range from combining multiple univariate imputa-
tion (i.e., monotone data imputation), conditional uni-
variate models or modeling the joint distributions within 
the entire dataset [59]. Similarly, exploring different 
research questions or at the scale of larger databases was 
beyond the scope of this initial analysis but would benefit 
from their own study. Accordingly, it would be interest-
ing to extend this simulation study and further analysis 
of missing data using additional SCI datasets such as 
the EMSCI or the Rick Hansen Spinal Cord Injury Reg-
istry (RHSCIR) [60], and similar observational datasets 
beyond SCI such as the Transforming Research and Clin-
ical Knowledge in Traumatic Brain Injury initiative [61] 
focusing on traumatic brain injury.

Conclusion
Our study raises awareness regarding the presence and 
impact of missing data in medical data sources (e.g., clini-
cal trials, registries), taking the example of SCI. We dem-
onstrated that disregarding missing data could not only 
result in a significant loss of information, but also lead to 
erroneous conclusions. Hence, we see this work as a first 
step towards systematically considering and reporting 
the presence of missing data as part of good practices in 
SCI data analysis and beyond.
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