
Veazie et al. 
BMC Medical Research Methodology          (2023) 23:298  
https://doi.org/10.1186/s12874-023-02113-1

RESEARCH

Better performance for right-skewed data 
using an alternative gamma model
Peter Veazie1,2*, Orna Intrator1,2, Bruce Kinosian3,4 and Ciaran S. Phibbs5,6 

Abstract 

Background  The Maximum Likelihood Estimator (MLE) for parameters of the gamma distribution is commonly 
used to estimate models of right-skewed variables such as costs, hospital length of stay, and appointment wait 
times in Economics and Healthcare research. The common specification for this estimator assumes the variance 
is proportional to the square of the mean, which underlies estimation and specification tests. We present a specifica-
tion in which the variance is directly proportional to the mean.

Methods  We used simulation experiments to investigate finite sample results, and we used United States Depart-
ment of Veterans Affairs (VA) healthcare cost data as an empirical example comparing the fit and predictive ability 
of the models.

Results  Simulation showed the MLE based on a correctly specified alternative has less parameter bias, lower stand-
ard errors, and less skewness in distribution than a misspecified standard model. The application to VA healthcare 
cost data showed the alternative specification can have better R square, smaller root mean squared error, and smaller 
mean residuals within deciles of predicted values.

Conclusions  The alternative gamma specification can be a useful alternative to the standard specification for esti-
mating models of right-skewed continuous variables.

Keywords  Gamma distribution, Generalized Linear models, Maximum likelihood estimation, Right-skewed variables

Introduction
Estimating model parameters for right-skewed distribu-
tions, such as for costs, hospitalization events, and length 
of hospital stays are important to research on healthcare 

and health services, and more generally to research in 
economics and social sciences, among other fields. For 
example, statistical models of the impact of long-term 
services and supports on overall costs of care from a 
health system perspective, if misspecified, can provide 
poor predicted costs for older frail populations thereby 
impacting real-world budgeting and policy decisions. 
Since costs tend to be right skewed, they, and other right-
skewed variables, are often modeled using a gamma dis-
tribution [1–7]. For example, Hong et al. used the gamma 
Generalized Linear Model (GLM) to analyse total and 
out-of-pocket health care expenditures from the Medi-
cal Organizations Survey linked to the Medical Expendi-
ture Panel Survey to evaluate the impact of Accountable 
Care Organizations on adults in the United States [8]. 
Barnett et al. used the gamma GLM to evaluate determi-
nants of healthcare cost among Veterans with HIV from 
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United States Department of Veterans Affairs (VA) data 
[9]. Graves et  al. used the gamma GLM to analyse the 
effect of respiratory track, urinary track, and hospital-
acquired infections on both hospital length of stay and 
costs among adults in a prospective cohort study of two 
Australian hospitals [6]. Nikolovaa et al. used the gamma 
GLM to analyse, and compare to alternative models, 
appointment waiting times using the Scottish morbidity 
record [7].

Methods for predicting values of right-skewed vari-
ables and estimating characteristics of their distributions 
are continually being investigated: for example, Machine 
Learning and nonparametric techniques are being devel-
oped in this context [10–12]. Nonetheless, parametric 
methods remain a common and useful approach [13–15]. 
However, because the characteristics of right-skewed 
variables can vary across populations and type of out-
come, no single technique or model is universally pre-
ferred. As Basu and Manning conclude in their review of 
cost modeling methods, “No current method is optimal 
or dominant for all cost applications” [16]. Rather than 
seek a methodological panacea, researchers can benefit 
from greater flexibility by expanding their toolbox and 
thereby increase the ability to select an approach appro-
priately aligned with their goals and data. In this paper, 
we recommend expanding the parametric modeling tool-
box to include an alternative specification to the common 
gamma model.

Although use of the gamma distribution is common 
[1–9], this specification of such models is not always the 
best option. For example, using VA data, Wagner et  al. 
[17] investigated the gamma distribution in their analy-
sis of cost-based risk scores, and Gao et al. [18] investi-
gated the gamma distribution in their development of a 
case-mix algorithm for hospitals and payers to compare 
their providers’ cost performance. Both studies found the 
gamma model performed poorly. In this paper we show 
that such results do not imply the gamma distribution is 
necessarily inappropriate for the data. Another specifica-
tion for the gamma model may perform well.

Gamma distribution models of positive variables are 
commonly based on two parameters: a scale parameter 
and a shape parameter. The mean of the distribution is 
equal to their product. In these models, the conditional 
expectation is commonly specified with the influence of 
covariates through the scale parameter (the gamma scale 
model), and consequently the conditional variance is 
specified as being proportional to the square of the con-
ditional mean. Both the Maximum Likelihood Estimator 
(MLE) and the Maximum Quasi-Likelihood Estimator 
(MQLE) tend to encode this specification. For example, 
see the Stata glm function [19] and the SAS statistical 
software’s proc glm procedure [20]. Specification tests for 

the gamma distribution also often take advantage of this 
moment condition: for example, see the Modified Parks 
Test [3, 21].

In this paper we focus on the gamma shape model, a 
model specification in which covariates influence the 
distribution through the shape parameter such that the 
variance is directly proportional to the mean [22, 23]. We 
show that the gamma shape model can be important for 
identifying a statistically adequate model using Monte 
Carlo simulation, and we show that, relative to the stand-
ard specification, it can provide better predictions, using 
data from the United States Department of Veterans 
Affairs.

Methods
In this section, we present the gamma shape model 
and the methods we used for evaluating the estimator’s 
performance.

Alternative gamma model specification
A random variable, Y, with a range on the positive real 
line, has a gamma distribution if its probability density 
function is.

in which the shape parameter is denoted as α, and the 
scale parameter is denoted as β. In terms of these param-
eters, the mean of Y is the shape parameter multiplied by 
the scale parameter:

The variance of Y is the shape parameter multiplied by 
the square of the scale parameter:

The standard gamma scale model takes advantage of 
the fact that, by multiplying and dividing the variance by 
the shape parameter α, the variance can be expressed as.

Because α⋅β is the mean, the variance is proportional to 
the mean squared:

f y =
1

Ŵ(a) · βa
· ya−1 · e

−
y
β

E(Y ) = α · β

(1)V (Y ) = α · β2

V (Y ) =
1

α
· (α · β)2

(2)V (Y ) =
1

α
· E(Y )2
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However, by inspecting Eq. 1, the variance is also directly 
proportional to the mean. The variance can be expressed 
as.

which is

The difference between Eqs. 2 and 3 is of little impor-
tance when considering a single distribution as they 
equate to the same value. However, the distinction can 
be important when considering conditional distributions 
across the range of covariate values. If distributions are 
nontrivially conditional on other variables, those vari-
ables must modify the parameters of the distribution. 
Consequently, in terms of the preceding gamma distri-
bution, if predictors influence the mean, they must do 
so by influencing either the shape parameter or the scale 
parameter (or both). For example, if the distribution of 
costs among those who are 60 years old is different from 
the distribution of costs among those who are 65 years 
old, then, assuming both are gamma distributed, either 
the shape parameter or the scale parameter (or both) 
must be different across the two groups.

If covariates affect only the scale parameter, then the 
conditional mean can be expressed as.

in which the scale parameter, β, is a function of random 
variables X, and the shape parameter, α, is constant: 
the mean is proportional to the scale parameter across 
the range of X. In this case, because we hold the shape 
parameter constant, the conditional variance, as a func-
tion of covariates, is proportional to the conditional 
mean squared, which is the typical specification:

If, instead, variables affect the mean through the shape 
parameter, α(x), and the scale parameter β is constant, 
then the conditional mean is proportional to the shape 
parameter across the range of covariates X:

Therefore, the conditional variance, as a function of 
covariates, is directly proportional to the conditional 
mean across the range of covariates X:

V (Y ) = β · (a · β)

(3)V (Y ) = β · E(Y )

E(Y |X = x) = α · β(x)

(4)V (Y |X = x) =
1

α
· E(Y |X = x)2

E(Y |X = x) = α(x) · β

(5)V (Y |X = x) = β · E(Y |X = x)

Note that Eq.  5 does not contradict the exponential 
family consequence for the gamma distribution that the 
variance is proportional to the mean squared: this rela-
tionship holds for any specific gamma distribution (and 
thereby for any specified set of covariate values) because 
Eq. 1 implies Eq.  2, as well as Eq.  3. Equations  4 and 5, 
however, become different specifications when they are 
treated as functions of covariates rather than as specific 
distributions.

The difference between these two specifications can 
influence the parameter and standard error estimators. 
Although the regression functions of both specifications 
have the same parametric form, if the regressors are 
included in the wrong parameter (either shape or scale 
parameter), then the wrong moment condition across 
covariates is established in the estimation of the con-
ditional likelihood function (i.e. either Eq.  4 or Eq.  5). 
Consequently, the model coefficients and standard error 
estimates are inconsistent. To maximize the likelihood 
function, the MLE will find the parameters that balance 
the regression function and the mean-variance moment 
condition. The MLE will adjust the regression coefficients 
to account for the incorrect moment condition thereby 
generating an inconsistent estimator and inconsistent 
standard error estimator.

The MQLE used to estimate parameters of Gener-
alized Linear Models does not generally address this 
concern. Li and Xiru [24], Chen et al. [25], and Yin and 
colleagues [26, 27], among others, show that the MQLE 
is consistent; however, these results assume the vari-
ance is correctly specified up to a scale parameter of a 
function of the mean [28], which is the issue of concern 
here. Although misspecification of the variance can be 
addressed using nonparametric quasi-likelihood meth-
ods [29], a parametric estimator may be preserved if the 
gamma shape specification is statistically adequate.

In this work, we focus on the common application of 
the gamma distribution to random variables defined on 
the positive real line. However, the implications of this 
work also apply to random variables with greatest lower 
bounds other than 0, i.e. with L any real number in the 
more general statement for the distribution:

for all y > L.

Simulation
The asymptotic properties of MLE are known to depend 
on correct specification [30]; consequently, if a model 
is misspecified, whether as the gamma scale or gamma 
shape model, then MLE may not perform well. We used 

f
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y
)

=
1
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Monte Carlo experiments to provide an example of the 
finite sample properties of the properly specified gamma 
shape model and the consequence of using the mis-
specified gamma scale model in this case. The purpose of 
these results is not to prove that proper specification of a 
likelihood function is required for asymptotic efficiency 
and consistent estimation, which is well established in 
the MLE literature [30], nor are results intended to prove 
that the models are always importantly different, as that 
depends on the data. We present results as an example 
to show that specification can meaningfully matter and 
thereby support the claim that the gamma shape model 
should be considered when modeling positive right 
skewed data, particularly if the gamma scale model is not 
fitting well.

For the purpose of this investigation, we used the com-
mon log-link function for the GLM, i.e. we specify the 
mean as the natural exponential of predictors:

in which θ denotes a vector of coefficients. We used 
10,000 Monte Carlo samples, with sample sizes of 1000 
observations each, to compare the scale and shape mod-
els. The Monte Carlo samples were drawn from a gamma 
distribution with a uniform distributed predictor variable 
on the interval of 0 to 2, denoted below as x, influencing 
the shape parameter, and with the scale parameter speci-
fied as a constant:

and

We estimated both the gamma scale and gamma shape 
specifications with MLE on each data set, and we com-
pared the averages and standard deviations of the coeffi-
cient estimates, the average standard error estimates, and 
the skewness and kurtosis of the estimate distributions.

Modeling costs of healthcare in the U.S. department 
of veterans affairs
We examined an adaptation of a Medicare Advantage 
capitation index (the CMS V21 risk score) based on Hier-
archical Condition Categories (HCC), which is a projec-
tion to a cost index used to capitate Medicare payments 
to Medicare Managed Care organizations [31]. Acknowl-
edging the under-reporting of diagnoses in VA data 
and its negative impact on the use of the CMS V21 risk 
score in the VA, Wagner et al. [17] created the Nosos risk 
score. The Nosos is a risk adjusted cost model that uses 
the V21 risk score and adds 48 mental health diagnoses 

E(Y |X = x) = eθ
′
x
,

α(x) = e2·x+0.05·x2+1

β = e3.

relevant to the cost of VA care and 24 drug categories, as 
well as age, age squared, indicators of being white, being 
male, having insurance, being married, being on a VA 
chronic illness registry, and priority status group indica-
tors (which indicates levels of service-related disability). 
We further modified the Nosos by including the individ-
ual indicators of HCC’s that comprise the V21 risk score 
rather than incorporating the V21 score itself.

We used data from VA inpatient, outpatient, and fee-
basis files, cleaned Managerial Cost Accounting costs, 
enrollment and vital status for fiscal year 2017. Medicare 
inpatient, Carrier and certain outpatient claims supple-
mented VA diagnoses. The dependent variable was the 
total outlier corrected Consumer Price Index adjusted 
VA cost. We applied the cost models to five popula-
tions of Veterans with varying frailty levels: [1] all Veter-
ans using VHA; [2] all Veterans using any one of the VA 
Geriatrics & Extended Care services (GEC Cohort); [3] 
all Veterans using VA’s Home-Based Primary Care, a pro-
gram that provides interdisciplinary care (physicians and 
nurse practitioners, nurses, social workers, therapists, 
dieticians, clinical pharmacists, and other professional 
care) to Veterans who are unable to leave their homes to 
receive care in clinics at their homes; [4] all Veterans who 
used VA services with JEN Frailty Index (JFI) less than 
six (corresponding to having no more than 1 Activity of 
Daily Living (ADL) impairment); and [5] those with JFI 
between six and twelve, corresponding to having two or 
more ADL impairments [32].

We estimated both the gamma shape and scale models 
as well as the more complex gamma shape/scale model 
in which covariates influence both parameters. We used 
MLE in the Stata statistical software version 17. See the 
Appendix for the Stata code to estimate the gamma shape 
model. To evaluate the within-sample predictive ability 
of each model, we used the R square to compare predic-
tion (calculated as 1 minus the ratio of the residual vari-
ance to the total variance), the square-root of the mean 
squared error to compare model precision, and the maxi-
mum average residual across deciles of predicted values 
to compare maximum residual deviation.

Results
Simulation results
Table  1 presents the average across 10,000 Monte 
Carlo samples of the coefficient estimates, the stand-
ard deviations of the estimates, the average of the 
standard error estimates, and the skewness and kur-
tosis of estimates for each model and parameter. The 
correctly specified gamma shape model has biases in 
the data of 0%, 2%, and 0.2% for the coefficients on x 
and x2, and the constant, respectively. Whereas, the 
misspecified gamma scale model has larger biases of 
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2%, 28%, and 2% for the coefficients on x and x2, and 
the constant, respectively. More striking, however, is 
the standard deviation of the estimates for the gamma 
shape model is approximately half of the correspond-
ing standard deviations for the gamma shape model 
for each coefficient. Moreover, the mean estimated 
standard errors are the same as the standard devia-
tions for the gamma shape model, but they are 26%, 
14%, and 40% lower than the standard deviations in 
the gamma scale model for the coefficients on x and x2, 
and the constant, respectively. Regarding the distribu-
tion of the coefficient estimates, there is no evidence 
that the gamma shape model estimates deviate from 
the Normal distribution in skewness and kurtosis; 
however, for the gamma scale model, estimates deviate 
from Normal in terms of skewness (p values < 0.000 for 
each coefficient), which can explain why its estimated 
standard errors do not match the standard deviations.

Healthcare costs in the U.S. department veteran affairs 
results
Table 2 presents the R square, root means squared error, 
and maximum mean decile errors for the two models 
on each of the five populations of U.S. Veterans. The R 
square was larger for the gamma shape model than the 
gamma scale model across all populations. Indeed, the 
R squares are negative for the gamma scale model esti-
mated on the overall non-institutional population and 
population with JFI less than six, whereas the gamma 
shape model has R squares of 0.57 and 0.41 in these pop-
ulations, respectively. The negative R squares indicate 
that the estimated regression function strongly deviates 
from the underlying true conditional expectation. The 
root mean squared error was 15–85% smaller for the 
gamma shape model across all populations. In addition, 
the maximum mean error across deciles of predicted val-
ues was smaller by approximately one order of magnitude 
for the gamma shape model  in all populations. In con-
trast, for this data, when allowing covariates to impact 
both shape and scale parameters, results fell between the 

Table 1  Monte Carlo simulation results for the distribution of estimates from 10,000 iterations for the gamma scale (incorrect 
specification) and gamma shape (correct specification) models

a Joint test of skewness = 0 and kurtosis = 3

Coefficient Model Mean Standard 
Deviation

Mean Standard 
Error

Skewness (p value) Kurtosis (p value) Joint test 
p valuea

θx= 2 Scale 2.037 0.393 0.290 0.145 (0.000) 3.064 (0.189) 0.000

Shape 2.000 0.166 0.166 -0.016 (0.505) 2.935 (0.182) 0.328

θx2= 0.05 Scale 0.036 0.163 0.141 -0.120 (0.000) 3.053 (0.272) 0.000

Shape 0.051 0.069 0.069 0.035 (0.151) 2.926 (0.124) 0.110

θConst= 1 Scale 0.978 0.210 0.126 -0.158 (0.000) 3.059 (0.228) 0.000

Shape 0.998 0.099 0.099 -0.032 (0.188) 3.059 (0.225) 0.202

Table 2  Prediction criteria results of the gamma scale and gamma shape and gamma shape/scale models for noninstitutionalized 
veterans in fiscal year 2017

a Scale = gamma scale model; Shape = gamma shape model; Both = gamma shape/scale model with covariates impacting both shape and scale parameters
b Neg denotes negative R square values, which is possible if the regression model does not match the true conditional expectations

Population

Criterion Modela Overall GEC Cohort HBPC JFI < 6 JFI ≥ 6

N 4 838 736 330 358 69 649 4 427 618 411 118

R2 Scale Negb 0.40 0.45 Negb 0.37

Shape 0.57 0.62 0.61 0.41 0.57

Both Negb 0.51 0.50 Negb 0.45

RMSE Scale 118 526 52 099 44 439 25 483 55 478

Shape 18 592 41 585 37 501 11 973 45 826

Both 108 444 46 881 42 301 22 458 51 790

Max Error Scale -56 164 -46 181 -24 676 -17 232 -46 239

Shape 8 369 9 198 9 789 4 675 9 436

Both -49 436 -27 233 -14 737 -13 753 -32 706
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gamma shape and gamma scale model results on each 
measure.

Discussion
Simulation results showed what we expected, given the 
requirements for efficiency and consistent estimation: 
The correctly specified model, in this case the gamma 
shape specification, showed less bias in the data (up to 
93% lower percent bias on estimated coefficients in this 
example), which can affect the accuracy of predicted val-
ues. Notably, however, the correctly specified model can 
also have smaller standard deviations of the coefficient 
sampling distributions (up to 58% lower in this example) 
and more accurate estimated standard errors (the stand-
ard deviations and estimated standard errors were the 
same for the correct specification but up to 40% off for 
the misspecified model). Moreover, the correct specifi-
cation had less skewness in the distribution of estimates 
(up to 89% lower magnitude in skewness in this example). 
These results indicate the potential for improved statisti-
cal inferences and more appropriate use of standard test 
statistics based on the normal distribution. The larger R 
square, smaller root means squared error, and smaller 
maximum mean decile errors in the empirical example 
provides evidence that the gamma shape model can have 
better predictive ability than the gamma scale specifi-
cation in real-world data—in some cases, considerably 
better. Because the difference between R square values 
across two models estimated on the same population 
using the same covariates is proportional to the differ-
ence in the variation of the model bias across the range 
of covariates, these results show that the gamma shape 
model had considerably lower model bias than the typical 
gamma scale model for this data. Although not a general 
replacement for the gamma scale model, which would 
outperform the gamma shape specification if it better 
matched the underlying data generating process, these 
results strongly suggest researchers consider the gamma 
shape specification among the set of models they use to 
model right-skewed variables.

An additional implication of the alternative specifica-
tion is regarding the interpretation of the commonly used 
Modified Park’s Test (MPT) for specification of the GLM 
family [3, 21]. The MPT tests whether the variance is pro-
portional to the square of the mean across the range of 
covariates. If the hypothesis is rejected, then the MPT is 
taken to imply the distribution is not a gamma. Clearly, 
this need not be true. Under the gamma shape specifi-
cation, the variance is directly proportional to the mean 
across the range of covariates. Rejecting the moment 
condition of the gamma scale specification leaves open 
the possibility that the distribution remains a gamma, but 
covariates influence the distribution through the shape 

parameter. Moreover, if we reject both moment condi-
tions, this still does not imply the distribution is not 
gamma because if predictors influence the mean through 
both the shape and scale parameters, then a consist-
ent moment condition does not hold across the range of 
covariate values and the Modified Park test simply does 
not apply.

To identify misspecification and differentiate the 
gamma shape and gamma scale models, one can use a 
model fit statistic such as the Veazie-Ye goodness-of-fit 
test [33] for each specification, which tests the gamma 
distribution with the specified parameterization. Or, one 
can estimate the gamma shape/scale model and use a 
joint test of each coefficient vector to determine which is 
affected by the variables; this assumes the gamma distri-
bution but tests parameterization (see Appendix for esti-
mation and testing code for use with the Stata statistical 
software program).

This paper does not present a survey of all possible 
gamma specifications. However, if neither the scale or 
shape models are statistically adequate, other param-
eterizations can be considered as well. See Venter [23] for 
examples in which the gamma can be specified such that 
its variance can be expressed as any power of the mean. 
Moreover, if regressors affect both the scale and shape 
parameters, then the regression function can be based 
on the model in which regressors affect both parameters 
as mentioned in the preceding paragraph. However, due 
to greater complexity of the gamma shape/scale model, 
which has twice the number of parameters associated 
with the same number of covariates, estimation can be 
problematic for small samples and computationally chal-
lenging for larger samples.

Conclusion
Parametric modeling is common for estimation, risk 
adjustment, and the identification of predictors of right-
skewed outcomes. In this paper, we presented an alter-
native to an otherwise common gamma specification and 
showed that it can have better empirical performance. 
We recommend the alternative gamma shape model be 
added to the toolkit for modeling right-skewed continu-
ous conditional distributions.
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