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Abstract 

Background  Across studies of average treatment effects, some population subgroups consistently have lower repre-
sentation than others which can lead to discrepancies in how well results generalize.

Methods  We develop a framework for quantifying inequity due to systemic disparities in sample representation 
and a method for mitigation during data analysis. Assuming subgroup treatment effects are exchangeable, an unbi-
ased sample average treatment effect estimator will have lower mean-squared error, on average across studies, 
for subgroups with less representation when treatment effects vary. We present a method for estimating average 
treatment effects in representation-adjusted samples which enables subgroups to optimally leverage information 
from the full sample rather than only their own subgroup’s data. Two approaches for specifying representation adjust-
ment are offered—one minimizes average mean-squared error for each subgroup separately and the other balances 
minimization of mean-squared error and equal representation. We conduct simulation studies to compare the perfor-
mance of the proposed estimators to several subgroup-specific estimators.

Results  We find that the proposed estimators generally provide lower mean squared error, particularly for smaller 
subgroups, relative to the other estimators. As a case study, we apply this method to a subgroup analysis from a pub-
lished study.

Conclusions  We recommend the use of the proposed estimators to mitigate the impact of disparities in representa-
tion, though structural change is ultimately needed.
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Background
Historically, racial and ethnic minorities and women 
have not been afforded the same representation in clini-
cal studies as White men [1, 2]. We refer to the propor-
tion of a sample that belongs to a particular subgroup as 
that subgroup’s sample representation. Despite govern-
mental policies aimed at increasing inclusion of women 

and racial and ethnic minorities [3–5], reviews of pub-
lished results from NIH-funded randomized controlled 
trials have shown that disparities in sample representa-
tion persist [6, 7]. Indeed, the NIH RCDC (Research, 
Condition, Disease Category) Inclusion Statistics report 
shows large disparities in the typical sample represen-
tation of racial and ethnic groups [8]. For example, the 
median representation of individuals identifying as Asian 
in cancer studies in 2021 was 2%; less than 1% each for 
American Indian or Alaska Native, Native Hawaiian or 
Other Pacific Islander, and individuals indicating more 
than one race; 8% for Black or African American; and 
74% for White; 6% identified as Hispanic or Latino and 
87% as not Hispanic or Latino. Disparities in sample rep-
resentation extend to other segments of the population as 
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well, including older adults [9] and adults with less than 
12 years of education [10].

Subgroup sample representation plays a role in the gen-
eralizability of average treatment effects (ATEs) in exper-
imental and observational studies. We distinguish two 
types of generalizability: out-of-sample and within-sam-
ple generalizing (Fig. 1). Researchers seeking to general-
ize their findings from the sample to a target population, 
such as a geographic region or a population diagnosed 
with a particular disease, are generalizing out-of-sample. 
In this setting, if treatment effects vary across subgroups 
that are disproportionately represented relative to the 
target population, sample estimates can be biased for the 
quantity of interest in the target population [11]. Accord-
ingly, researchers might aim to have the representation 
of subgroups in a sample align with their corresponding 
representation in a target population. When this is infea-
sible, analytic methods have been developed for out-of-
sample generalizing [12–19].

Even if researchers are able to sample uniformly at 
random from the target population of interest (or make 
statistical adjustments to mimic this), results (i.e. aver-
age treatment effects) might not generalize equally well 
across subgroups within the sample. In contrast to out-
of-sample generalizing, we refer to generalizing study 
results to subgroups as within-sample generalizing, which 
is the focus of this paper. Subgroup analyses and hypoth-
esis tests for interactions are common ways to explore 
and/or confirm within-sample generalizability of ATEs 
[20, 21]. NIH requires Phase III clinical trials to provide 
“...valid analysis of whether the variables studied in the 
trial affect women or members of minority groups...dif-
ferently than other subjects in the trial...” [5]. Nonethe-
less, subgroup analyses are not always performed and 
have been cautioned against for their potentially high 
statistical noise [22, 23]. When treatment effects vary and 

when some subgroups systematically have greater rep-
resentation than others, an ethical question arises: who 
benefits and who is disadvantaged when researchers gen-
eralize a sample ATE to specific subgroups? While intui-
tion might suggest that results will generalize best for 
subgroups with the greatest sample proportion, we offer 
a formal approach to answering this question below.

Trading off some bias in estimation for a reduction of 
noise is one way to ease one of the main concerns with 
subgroup analysis: imprecision [24, 25]. Biased estima-
tors can borrow strength across subgroups and result 
in lower mean-squared error, which incorporates both 
bias and noise, for each subgroup. Bayesian hierarchical 
modeling provides one route to improving subgroup-
specific estimates by borrowing strength across sub-
groups [24, 26, 27] and these models can be fit using the 
beanz R package [28]. We distinguish the approach pre-
sented in this paper below in the Discussion section.

The key innovation of our approach is to build on 
existing methodological ideas used for out-of-sample 
generalizing to the context of within-sample general-
izing, by creating pseudo-samples in which representa-
tion has been reweighted to improve subgroup effect 
estimates. This work builds on recent approaches focus-
ing on subgroup-level inferences [29–32]. This approach 
makes it easy for researchers to (1) use existing unbiased 
subgroup-specific estimators, (2) combine this method 
with existing methods for generalizing subgroup-specific 
effects to a broader target population of interest, and (3) 
incorporate stakeholder input and judgement into sub-
group modeling in a straightforward way. We proceed 
by first introducing notation used throughout the paper. 
Under some assumptions, we show how disparities in 
sample representation affects within-sample generaliz-
ability of the sample ATE. We define effects of interest, 
which we conceptualize as representation-adjusted ATEs, 

Fig. 1  Depiction of two directions of generalization and the relationship between targets of inference. The smallest three ovals represent three 
mutually exclusive subgroups, labeled A, B, and C, of the study sample
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and provide identification proofs and estimators. Lastly, 
we examine the performance of the proposed estimators 
in several simulation studies and a case study. We hope 
that providing a straightforward method for modestly 
improving the accuracy of subgroup-specific estimates 
will support researchers conducting subgroup analyses 
rather than reporting ATEs only.

Methods
Notation and definitions
We define the following random variables: A ∈ A = {0, 1} 
indicates treatment assignment; X ∈ X  is a vector of 
baseline covariates; Y (a) ∈ R is the potential outcome 
under assignment to treatment a; Y is the outcome that 
is observed; and S ∈ {0, 1} indicates sample member-
ship. We observe a sample of N independent realizations 
of (A,X ,Y , S = 1) , where S = 1 indicates membership 
in the sample (data not in the study sample would have 
S = 0 ). We assume the data follow a joint distribution 
P . Since we are interested in subgroups of the sample 
defined by baseline covariates, we define a partition of 
X  into G mutually exclusive, non-empty subgroups that 
cover all possible values: V = {v1, . . . , vG} That is, each vg 
defines a subgroup of individuals with X ∈ vg [31].

We define the following quantities: the sample ATE 
(SATE),

the sample representation of individuals with X ∈ vg,

and the subgroup sample ATE for individuals with X ∈ vg,

We let p = (p1, . . . , pG)
T  be the vector of subgroup 

representation probabilities and τ = (τ1, . . . , τG)
T  be 

the vector of subgroup sample ATEs. With the law of 
iterated expectations, β = pT τ . For sake of clarity of 
exposition, we focus on estimation of the sample ATEs 
since our focus is on within-sample generalization, but 

(1)β:=E[Y (1)− Y (0)|S = 1] ,

(2)pg :=P X ∈ vg |S = 1 ,

(3)τg :=E
[

Y (1)− Y (0)|X ∈ vg , S = 1
]

.

we note that the arguments and methods presented 
can be generalized to a target population using existing 
methods [31].

The impact of disparities in sample representation
Our first task is to reason quantitatively about the impact 
that disparities in sample representation have on within-
sample generalizability. For motivation, we consider a toy 
example. Researchers conduct five different studies each 
with three subgroups (groups A, B, and C) with repre-
sentation fixed to 70%, 20%, and 10% respectively. In each 
study, researchers obtain an unbiased and very precise 
estimate of the SATE. We examine how applicable the 
overall study result (SATE) is for each subgroup by meas-
uring the absolute difference between the SATE and the 
subgroup’s true effect. Hypothetical data are shown in 
Table 1.

From this example, we see that for studies 2-4, the 
SATE is closest to the effect of the most represented sub-
group (group A). However, in study 1, the SATE is closest 
to τB , and in study 5, the SATE is closest to τC . This illus-
trates that the generalizability of the SATE to a particu-
lar subgroup is not solely determined by that subgroup’s 
representation in the study [33]. The SATE is a weighted 
average of the subgroup-specific ATEs; although sub-
groups with greater representation get more weight, an 
extreme group might pull the average away from a major-
ity group (as in study 1) or two groups with similar effects 
might benefit from each other’s presence (as in study 5). 
Consequently, representation is important, but not the 
only consideration when assessing the within-sample 
generalizability of results for a given study; knowledge of 
how much subgroup-specific ATEs are expected to vary 
is also required.

We formalize these observations by examining the risk 
function, which specifies the expected loss over repeated 
samples from the data-generating distribution for a par-
ticular estimator and parameter of interest [34]. Under 
squared error loss, the risk function is the mean squared 
error (MSE). For an unbiased estimator of the SATE, β̂ , 
the MSE for estimating τg can be expressed as:

Table 1  Hypothetical data for the toy example comparing the SATE ( β ) to subgroup-specific ATEs ( τA , τB , τC ). Bolded values indicate the 
lowest absolute difference between subgroup-specific effect and SATE in each row

Study τA τB τC β |τA − β| |τB − β| |τC − β|

1 -3.51 -2.96 4.04 -2.65 0.87 0.31 6.69

2 -4.39 -0.13 4.62 -2.64 1.75 2.51 7.26

3 -1.84 -1.08 -0.26 -1.53 0.31 0.45 1.27

4 -1.16 -4.71 -4.22 -2.18 1.02 2.53 2.05

5 -1.75 0.85 -1.38 -1.19 0.56 2.05 0.19
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where σ
β̂
 is the standard error for β̂ and eg is a column 

vector with the gth entry equal to 1 and all other entries 
equal to 0 (derivation is in the section named "Impact of 
disparities in representation" of Additional file  1). The 
risk function (Eq.  4) for β̂ depends on: 1) the standard 
error of the SATE estimator and 2) the sample represen-
tation of subgroups coupled with the products of all pairs 
of subgroup ATEs.

Using the risk function directly to draw conclusions 
about within-sample generalizability is impractical due to 
its dependence on the unknown subgroup ATEs in τ . To 
make progress, we propose examining the average risk, 
also known as the Bayes risk, given a prior distribution 
or weighting for the parameter values [34]. We model τ 
as following a joint distribution π , which we interpret in 
two ways. Taking a Bayesian perspective, we can inter-
pret π as a prior belief about the probability of different 
values of τ . Alternatively, from a frequentist perspective, 
we could interpret π to be the distribution of subgroup 
ATEs that we would observe across many different stud-
ies (similar to the toy example above). The latter framing 
allows us to examine the impact of systemic disparities in 
sample representation.

In general, we define the inequity in average risk 
between two subgroups, X ∈ vi and X ∈ vj as

where θ̂i, θ̂j are estimators for τi, τj , respectively. Criti-
cally, inequity in average risk provides us a path forward 
for reasoning about the impact that disparities in sample 
representation have on within-sample generalizability. 
Other aspects of the distribution of differences in MSEs 
across studies could be considered, but here we focus on 
the mean difference. As is often the case, when an unbi-
ased SATE estimator is used to obtain a single estimate 
from a sample, the inequity for individuals with X ∈ v1 
relative to individuals with X ∈ v2 is

To calculate the inequity measure of β̂ in Eq. 6, we do 
not need to specify the full distribution of τ but rather 
only Eτ [ττ

T ] = �τ + µτµ
T
τ  , where �τ and µτ are the 

covariance matrix and mean vector for τ , respectively. If 
researchers are uncertain how the treatment effect var-
ies across subgroups, we recommend they assume π is 
exchangeable across subgroups (i.e. permutation of sub-
group labels leaves the joint distribution π unchanged) 
[27]. This results in the following simplification,

(4)R
(

τg , β̂
)

= σ 2
β̂
+ (eg − p)T ττT (eg − p) ,

(5)�i,j

(

θ̂i, θ̂j

)

:=Eτ

[

R
(

τi, θ̂i

)

− R
(

τj , θ̂j

)]

,

(6)
�1,2

(

β̂ , β̂

)

= tr

{(

(e1 − p)(e1 − p)T − (e2 − p)(e2 − p)T
)

Eτ

[

ττT
]}

.

where φ2 = varτ (τi − τj) = Eτ [(τi − τj)
2] for any i  = j.

Equation  7 has consequential implications: when 
treatment effects vary and researchers report only aver-
age treatment effects, results will be less applicable on 
average for subgroups with lower representation. This 
holds both in a single study in which researchers have 
no prior knowledge of subgroup effect heterogeneity and 
across a collection of studies with consistent represen-
tation disparities. The inequity in average risk between 
two subgroups is directly proportional to the difference 
in representation of the subgroups and the variance of 
subgroup-specific ATE differences, under the assump-
tions given above. At the design stage of a study, given 
an approximation of how much treatment effects are 
expected to vary across subgroups φ , this simple for-
mula could inform how much disparity in representation 
could be tolerated during study enrollment. At the anal-
ysis and interpretation stage, researchers can use Eq.  7 
to more quantitatively reason about the within-sample 
generalizability of study results, by considering both dis-
parities in representation and expectations of subgroup 
differences in ATEs.

In cases where treatment effects are expected to vary 
substantially across subgroups, researchers could sam-
ple subgroups in equal proportion, so that p2 − p1 = 0 , 
to eliminate the inequity in Eq. 7. However, there are no 
guarantees on how accurate the SATE estimate would be 
for each of the subgroups. Another option is to change 
the estimator used to obtain each of the subgroup-spe-
cific estimates. Simple alternatives would be to obtain 
unbiased estimates of subgroup-specific treatment 
effects by stratifying the analysis by subgroup or fitting 
a regression model of the outcome with treatment-sub-
group interaction terms. We quantify the inequity of this 
approach as

where τ̂1 , τ̂2 are unbiased subgroup-specific estimators 
of τ1, τ2 , respectively, and σ1, σ2 are the corresponding 
standard errors. In large samples, σ1 and σ2 will tend to 
be small. In small samples, when p2 > p1 , we generally 
have that σ2 < σ1 due to having fewer data for the less 
represented group. This implies that subgroups with less 
representation will have higher risk on average. While 
this approach addresses the inequity due to differences 
in the bias of the SATE estimator, it creates another issue 
due to differences in variance. Next, we discuss a third 
option which seeks to find a balance between these two 
alternatives.

(7)�1,2

(

β̂ , β̂
)

= φ2(p2 − p1) ,

(8)�1,2

(

τ̂1, τ̂2
)

= Eτ

[

σ 2
1 − σ 2

2

]

,
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Representation‑adjusted ATEs
When estimating a subgroup-specific ATE, we need 
not completely dispense with the information provided 
by the other subgroups in the sample. Effect sizes for 
some subgroups in the sample can give an approximate 
sense of reasonable values for the effect sizes of other 
subgroups. For example, if we know that for many sub-
groups, the ATE is generally an increase of the outcome 
by 2 to 5 units, then a subgroup-specific effect of 20 units 
would be suspect (though not impossible). When sub-
groups are analyzed separately, this valuable information 
is lost. Similar to Bayesian analyses of subgroup effects 
[25, 27, 35], we sought to make use of this informa-
tion to improve the precision of subgroup-specific ATE 
estimation.

Since we noted that differences in representation 
led to inequity in average MSE, we consider multiple 
pseudo-samples in which all sample data are retained 
for each subgroup. In each, subgroup representations 
are adjusted in an optimal way to improve the accuracy 
of the SATE for the subgroup of interest. We develop 
a method that does not require specification of full 
prior distributions and is less computationally expen-
sive than fully Bayesian approaches. In addition, our 
approach allows for correlated subgroup-specific ATE 
estimators. We denote membership in the representa-
tion-adjusted sample for individuals with X ∈ vg with 
the discrete random variables Sg , taking values 0 or 
1. The observed sample indicator is still denoted by S 
without a subscript. For each g = 1, . . . ,G , we define 
new effects of interest as

We refer to this effect as a representation-adjusted 
ATE (RATE) for individuals with X ∈ vg . The degree 
of representation adjustment will depend on both the 
amount of information we have for each subgroup and 
prior expectations of how much subgroup ATEs dif-
fer, which we discuss under Estimation and inference 
below.

Identification
The RATE can be expressed as a function of observed 
variables (A,X ,Y , S = 1) under certain assumptions. We 
assume that mean potential outcomes in the subgroup 
in the observed sample are equal to mean potential out-
comes in the same subgroup in the pseudo-sample; that 
is, E[Y (a)|X ∈ vg , S = 1] = E[Y (a)|X ∈ vg , Sg = 1] , for 
all g and a ∈ A . With this assumption of exchangeability 
over sample indicators—which is different than the sub-
group effect exchangeability assumption we discussed 
in the previous subsection—the RATE can be expressed 

(9)ηg :=E
[

Y (1)− Y (0)|Sg = 1
]

.

as a weighted average of the subgroup-specific effects as 
follows,

where the first equality is the definition of the effect, the 
second follows from the law of iterated expectations, the 
third follows from the assumption of exchangeability 
over sampling indicators, and the last follows from the 
definition of τk . Equation  10 is analogous to the trans-
port formula given in [14]. Note that the equalities shown 
above could be applicable to both experimental and 
observational studies. In the case of observational stud-
ies, however, assumptions about exchangeability of treat-
ment assignment are necessary for the identification of 
τk . Steps for identifying the subgroup-specific effects τk 
closely follow the identification proofs in [31] which we 
detail in the section named "Identification" of Additional 
file 1. If out-of-sample generalizing is of interest, τk can 
simply be replaced with the respective subgroup effects 
in the target population. Again, identification arguments 
follow those in [31] as described in the section named 
"Identification" of Additional file 1.

Estimation and inference
Based on Eq. 10, RATE estimators can be expressed as:

where τ̃ is a vector of RATE estimators, Q is matrix of 
probabilities with entries qij = P(X ∈ vj|Si = 1) , and τ̂ 
is a vector of unbiased estimators for τ . Accordingly, we 
need to 1) unbiasedly estimate the subgroup-specific 
ATEs: τ̂ and 2) specify subgroup probabilities in the 
representation-adjusted samples Q which we treat as 
fixed. For step 1, the estimators presented in [31] can 
be adapted to estimate sample-specific subgroup effects 
by conditioning on sample membership. For example, a 
typical outcome modeling approach might estimate the 
subgroup-specific ATEs as

where En[·] denotes an empirical expectation and ĝa(X) 
is an estimator for E[Y |X , S = 1,A = a] for a = 0, 1 . 
Inverse-probability weighting estimators, augmented or 
not, are another possibility.

(10)

ηg = E[Y (1)− Y (0)|Sg = 1]

=

G
∑

k=1

P(X ∈ vk |Sg = 1)E[Y (1)− Y (0)|X ∈ vk , Sg = 1]

=

G
∑

k=1

P(X ∈ vk |Sg = 1)E[Y (1)− Y (0)|X ∈ vk , S = 1]

=

G
∑

k=1

P(X ∈ vk |Sg = 1)τk ,

(11)τ̃ = Qτ̂ ,

(12)τ̂ = En

[

ĝ1(X)|X ∈ vg , S = 1
]

− En

[

ĝ0(X)|X ∈ vg , S = 1
]

,
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For step 2, we consider two approaches. First, we can 
use estimated probabilities that minimize the average 
MSE for each subgroup. This approach is motivated 
by the notion that what is fair is to provide each sub-
group with the best estimator possible given the data, 
where the best estimator is defined by minimal average 
MSE. In general, this requires specification of a particu-
lar prior distribution for the subgroup effects, but we 
partially avoid this by assuming exchangeability across 
subgroups. Assuming exchangeability, minimizing the 
average MSE yields the following construction for rep-
resentation-adjusted samples for subgroup g, which we 
refer to as the optimal weights (detailed derivations in 
the section named "Specifying subgroup representation 
for RATE estimators" of Additional file 1):

where qTg  is the gth row of Q, � = φ2(2�τ̂ + φ2
I)−1 , �τ̂ 

is the covariance matrix for τ̂ , and φ2 was defined in the 
last section as varτ (τi − τj) for i  = j . When the set of 
subgroup-specific effects τ are uncorrelated and the set 
of subgroup-specific estimators τ̂ are uncorrelated, the 
RATE estimator corresponds to the pooled estimator 
from a simple Bayesian normal hierarchical model with a 
uniform prior on the hypermean and fixed hypervariance 
for τ.

One potential concern might be that the optimal 
weights could still result in disparities in the representa-
tion of each subgroup within their respective represen-
tation-adjusted sample, with larger subgroups tending 
to have greater representation. To address this, a second 
way to specify probabilities in Q could follow a similar 
process but constrain subgroup probabilities to be the 
same for each representation-adjusted sample. Adding 
constraints to optimization algorithms has been a com-
mon way of tackling unfairness in model performance in 
other applications [36, 37]. One way to force representa-
tion to be the same for the effect estimation for each sub-
group is to require qg = weg + (G − 1)−1(1− w)(1− eg ) 
for some w ∈ [0, 1] . Then, we can choose a w to use for 
all subgroups by minimizing a joint function of the sub-
group-specific average MSEs—specifically we consider 
the average MSE averaged over the subgroups. Under 
mild regularity conditions, this yields the following rep-
resentation probabilities for the RATE for subgroup g, 
which we refer to as the shared weights (details in the 
section named "Specifying subgroup representation for 
RATE estimators" of Additional file 1):

(13)q
optimal
g =

(

1− 1
T�eg

)(

1
T�1

)−1
�1+�eg ,

(14)qsharedg =
1

1+ γ
eg +

γ

1+ γ

1− eg

G − 1
,

where γ = σ̄ 2(G−1)−V1

φ2G/2+V2/(G−1)−V1
 , σ̄ 2 = G−1

∑

g∈G σ 2
g  , 

σ 2
g = var(τ̂g ) , V1 = G−1

∑

g∈G eTg �τ̂ (1− eg ) , and 
V2 = G−1

∑

g∈G = (1− eg )
T�τ̂ (1− eg ).

In practice, using either approach, researchers could 
specify φ or a range of φ values directly based on sub-
stantive knowledge and empirically estimate the val-
ues of τ̂ and �τ̂ . Note in Eqs. 13 and 14 that as φ → ∞ , 
qg → eg . This means that for large values of φ , subgroups 
are effectively analyzed separately and consequently, 
estimates become unbiased. In other words, large values 
of φ effectively stratify the analysis by subgroup. On the 
other extreme, setting φ = 0 effectively ignores possible 
treatment effect heterogeneity. Choosing an intermedi-
ate value of φ , based on an expectation of the amount of 
treatment effect heterogeneity, permits some bias for a 
reduction in variance. To help reason about appropriate 
values for φ , researchers could make use of Popoviciu’s 
inequality on variances [38] which implies that if the dif-
ference in subgroup-specific ATEs is bounded, that is 
P(|τi − τj| ≤ c) = 1 , then φ = SD[τi − τj] ≤ c/2 . If a 
researcher knows that subgroup-specific ATEs should 
not differ by more than 2 units, then φ should be no more 
than 1. The Bhatia-Davis inequality is another option [39]. 
Figure 2 summarizes the steps a researcher would take to 
estimate RATEs. Note that �τ̂ in Eqs. 13 and 14 needs to 
be replaced with with an estimate �̂τ̂.

Representation-adjusted samples constructed in this 
way have some useful statistical properties. As the sam-
ple size grows, standard errors for subgroup estimators 
will shrink causing the representation for the subgroup of 
interest to approach 1. This means that RATE estimators 
are asymptotically unbiased (further detail in the section 
named "Large sample properties of RATE" of Additional 
file  1). As a result, improvements in the recruitment of 
participants from a subgroup naturally will reduce the 
bias in estimation, but in contexts where this is infeasible, 
this approach enables small subgroups to wield the full 
information of the data sample to inform their estimate. 
Lastly, inference for the RATE estimator is straightfor-
ward given it is a weighted average of the subgroup-spe-
cific estimators ( ̂τ ). The covariance matrix of the RATE 
estimators is given by �τ̃ = Q�τ̂Q

T , which could be used 
to construct confidence intervals. Non-parametric boot-
strap intervals are another option.

Simulation
While the optimally weighted RATE estimator yields 
the lowest average MSE across a broad class of estima-
tors, the distribution of MSE, sensitivity to misspecify-
ing φ , and impact of adding a shared weight constraint 
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is unclear. To address these questions, we simulated 
randomized controlled trials of a binary treatment and 
continuous outcome with sample size of 300. For sim-
plicity, we assumed that trial participants were sampled 
uniformly at random from some target population. We 
considered trials with either three or five subgroups, 
and trials with subgroup-specific effects independently 
and identically drawn from three different distributions 
(standard normal; bimodal; Gamma(3,3)) for a total of six 
different scenarios. The bimodal distribution was a mix-
ture of two normal distributions: N(0.5, 1) with probabil-
ity 0.8 and N(-3, .5) with probability 0.2. All distributions 
were scaled such that the true value of φ was 1. In trials 
with three subgroups, representation was fixed to 75%, 
15%, and 10% for groups 1-3 respectively. For trials with 
five subgroups, representation was fixed to 67%, 15%, 
10%, 5%, 3% for groups 1-5 respectively. Treatment was 
randomly allocated with equal proportions within each 
subgroup to ensure treatment balance. Outcomes were 
generated as follows:

where A is a binary indicator of treatment assignment, 
βG are the sampled subgroup effects for group G, X1 is a 
continuous covariate sampled from N(1, 1), X2 is a binary 
covariate sampled from a Bernoulli(0.3), and ǫ is random 
error sampled from N(0, 1).

For each of the six scenarios, we drew 500 sets of sub-
group effects and for each set, we simulated 500 data 
samples from which we estimated the root mean squared 
error (RMSE) of subgroup-specific effect estimates. In 
each data sample, we obtained estimates from a strati-
fied model, regression model with treatment-subgroup 
interaction terms, a model with a random effect for the 

(15)Y = 1+ βGA+ 21{G=1 or 3} + X1 + 2.5X2 + ǫ,

treatment, and four different RATE estimators. Sub-
group-specific effect estimates from the regression model 
were obtained using the multcomp R package [40]. In the 
random effects model, we obtained subgroup-specific 
predicted effects using the lme4 R package [41]. The ran-
dom effects estimator is equivalent to a basic Bayesian 
shrinkage estimator with a fixed value for the prior vari-
ance of the subgroup-specific effects and non-inform-
ative prior for the mean of the subgroup-specific effects 
[25]; this served as an easy-to-implement substitute for 
comparing the RATE estimators to a fully Bayesian hier-
archical model. The RATE estimators used subgroup-
specific estimates from the interaction model. For three 
of the RATE estimators, we used the optimal weights 
with different values of φ (0.75, 1, 1.5); these values were 
chosen to undervalue, appropriately value, and overvalue 
the true value of φ , respectively. For the fourth RATE 
estimator we used the shared weights with φ = 1 . We 
plotted cumulative estimates of the 25th, 50th, and 75th 
percentile of the RMSE distribution to confirm that esti-
mates had stabilized after 500 draws from the subgroup 
effect distribution. All simulations were performed in R 
Statistical Software v4.2.1 [42].

Results
Simulation results
In the scenario with three subgroup effects drawn from 
a common normal distribution, we found that all the 
RATE estimators had slightly lower median RMSE than 
the other estimators for groups 2 and 3, even when φ 
was misspecified. However, in cases where a given sub-
group’s true effect happened to be very different from the 
effect in the other subgroups, the RMSE from the RATE 
estimators for the given subgroup was high. Boxplots of 

Fig. 2  Steps to estimating RATEs
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estimated RMSE of the subgroup-specific effect estima-
tors are shown in Fig.  3; corresponding summary sta-
tistics are shown in Additional file  1 (Table  S1). RATE 
estimators with a shared set of weights had similar per-
formance to those with optimal weights for groups 2 and 
3, but resulted in substantially worse performance for 
group 1, the largest group. Except for the shared weight 
RATE estimator, other estimators had similar RMSE 
for group 1. There was considerably more variability in 
the RMSE from the random effects model estimates for 
groups 2 and 3 compared to the other estimates. Cor-
responding figures for the five remaining scenarios are 
shown in Additional file 1 (Figs. S1–S5); results were gen-
erally consistent.

Empirical example
To demonstrate the use of this method in an applied 
example, we estimated RATEs using results from an 
analysis of the Moving to Opportunity study (MTO) 
[43]. The MTO ran from 1994 to 1998 and was spon-
sored by the U.S. Department of Housing and Urban 
Development in five U.S. cities. Briefly, the MTO ran-
domly assigned families living in public housing in high-
poverty areas to receive a voucher that would subsidize 
rent in the private market. The authors in [43] assessed 
how rental subsidies impacted psychological distress and 
behavioral problems of the children in the study, focus-
ing on effect modification by gender and family health 

vulnerability. Families were considered “vulnerable” if 
any household member had a disability or any child in 
the household had a health or developmental problem. 
We focus on the analysis of psychological distress which 
was measured using standardized factor scores from a 
latent variable analysis of the Kessler 6 scale.

The authors in [43] found that the intervention benefited 
girls from nonvulnerable families but had a detrimen-
tal effect on boys from vulnerable families. We explored 
how robust these findings were when there was little prior 
expectation of these differences. We used published esti-
mates for each of the four groups from [43]—nonvulner-
able girls, vulnerable girls, nonvulnerable boys, vulnerable 
boys—and calculated corresponding standard errors based 
on the 95% confidence intervals. Although these esti-
mates are likely correlated since they are not from a fully 
stratified model, we assumed they were uncorrelated for 
illustrative purposes. We assumed that subgroup-specific 
effects should not differ by more than 0.25 SDs. Based on 
Popoviciu’s inequality on variances, we would expect that 
φ , the standard deviation of differences in subgroup-spe-
cific effects, is less than or equal to 0.125. With φ = 0.125 , 
we obtained RATE representation, estimates, and 95% 
confidence intervals (Table  2). The full Q matrix can be 
found in the section named "Case study detail" of the Sup-
plementary Material. Even under this skeptical prior, there 
is still evidence of a difference in treatment effects between 
groups. Additionally, RATE estimates provide tighter 

Fig. 3  Box plots of estimated RMSE of subgroup-specific treatment effect estimators from simulation of randomized controlled trials with binary 
treatment, continuous outcome, and N = 300 . Results are based on 500 draws of 3 subgroup effects from a standard normal distribution scaled 
so that φ2

= 1
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confidence intervals for all subgroups compared to the 
original subgroup-specific estimates.

Discussion
Some population subgroups—including, but not limited 
to, racially and ethnically marginalized groups, women, 
and older adults—consistently have lower representation 
in experimental and observational studies compared to 
their counterparts. In many cases, such as investigations of 
associations between Framingham risk factors and cardio-
vascular disease [44] and genetic studies of various health 
outcomes [45], imbalance in study representation has 
led to study findings that generalize better for subgroups 
with greater representation. In other cases, such as rand-
omized controlled trials related to depression, the impact 
of this imbalance is unknown because the heterogeneity in 
treatment effects is left unexplored [46]. In this paper, we 
have presented a statistical framework for understanding 
this phenomenon, focusing on SATE estimation, that can 
partially inform the design, analysis, and interpretation 
of studies in heterogeneous populations. We showed that 
the difference between subgroups in average risk (MSE) 
of the SATE estimator increases linearly with the dispar-
ity in representation and with the variance of treatment 
effect differences. Improving data collection and commu-
nity engagement will be essential to addressing the inad-
equate inclusion of marginalized groups in experimental 
and observational studies and reduce this inequity.

In practice, given that many studies do have substantial 
disparities in representation, we sought to improve esti-
mation accuracy, on average across studies. Motivated 
by the idea that sample representation has an impact on 
the generalizability of study results and that changing or 
adjusting sample representation for less represented sub-
groups could improve generalizability for these groups, 
we introduced a new effect of interest which we refer to 
as a RATE, which is the ATE in a representation-adjusted 
sample. In general, the RATE is any weighted average of 
subgroup-specific effects. The RATE estimators require 
researchers to input into the analysis how different they 
expect subgroup-specific effects to be. Estimating the 
SATE or unbiased subgroup-specific effects are particu-
lar cases of the RATE estimators in which researchers 

either implicitly assume that subgroup-specific effects 
are completely homogeneous or completely distinct from 
one another, respectively. Specification of φ allows for a 
balance between these choices and could be a discussion 
among key stakeholders and community members of the 
relevant sociodemographic subgroups. After φ is speci-
fied, the unbiased subgroup-specific effects are optimally 
weighted and combined in a different way for each sub-
group to minimize the average risk. This method can 
improve upon simple unbiased subgroup-specific esti-
mates by borrowing strength from the other subgroups. 
With that said, the performance of the RATE estimator 
in any given study will depend on the true, unknown sub-
group-specific effects in that study. The theoretical results 
presented in this paper show that the RATE estimator can 
provide the lowest MSE on average across many studies.

We explored an alternative RATE estimator in which 
subgroups were constrained to use a shared set of repre-
sentation probabilities. We found in our simulations that 
this led to substantially worse performance for the largest 
subgroup relative to the optimally weighted RATE. While 
a set of shared weights might be valued for its ability to 
give subgroups equal representation, lower average MSE 
can always be achieved by using the optimally weighted 
RATE. In many scenarios in which algorithmic fairness 
is a concern (e.g., employment, criminal sentencing, 
and loan applications), relevant parties generally differ 
in their goals (e.g. hiring the best candidates vs. secur-
ing a job) leading to deliberation of what is or is not fair. 
Aside from cases of scarce resource allocation (e.g., organ 
transplantation), medical care differs in that all parties 
share the same goal: improving patient health [47]. Con-
sequently, obtaining the most accurate estimates of treat-
ment effectiveness possible for each subgroup should be 
the main objective. For this reason, we view the optimally 
weighted RATE as a more equitable approach to adjust-
ing sample representation.

We distinguish the RATE estimators from Bayesian 
subgroup modeling, such as the methods discussed in 
[27], in a few ways. First, we do not make assumptions 
about the exact distribution of the underlying subgroup 
effects and relevant hyperparameters as a fully Bayes-
ian approach would. Second, we allow for correlation 

Table 2  NVG: nonvulnerable girls, VG: vulnerable girls, NVB: nonvulnerable boys, VB: vulnerable boys. Stratified and RATE 
representation and estimates of the impact of MTO on psychological distress. RATE estimates were calculated using φ = 0.125

Group Sample representation Original estimates RATE-opt representation RATE-opt estimates

NVG 30.9% -0.21 (-0.34 to -0.07) 72.4% -0.12 (-0.22 to -0.02)

VG 19.5% 0.02 (-0.15 to 0.18) 63.3% 0.02 (-0.09 to 0.12)

NVB 26.9% 0.04 (-0.09 to 0.17) 73.2% 0.03 (-0.07 to 0.13)

VB 22.7% 0.26 (0.09 to 0.44) 60.5% 0.14 (0.03 to 0.25)
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between the subgroup-specific effect estimators. Sub-
group-specific estimators obtained from a regression 
model adjusted for covariates are typically correlated 
unless covariate effects are estimated separately for each 
subgroup. This correlation allows for additional informa-
tion-borrowing. Third, we specify the standard deviation 
of the differences in subgroup effects directly rather than 
incorporate an estimate from the data. Estimating this 
parameter from the data can be challenging when the 
number of subgroups is small. In simulation, we saw that 
in the case of 3 subgroups, the random effects estima-
tor performed substantially worse. However, there were 
some cases in which specifying this parameter directly 
led to large RMSEs as well.

The RATE estimator with optimal weights relies on 
the assumption that the subgroup effects are exchange-
able, which is typical for Bayesian subgroup analyses 
though more complex methods are available [27]. The 
full exchangeability assumption could be weakened and 
would require additional hyperparameters to be speci-
fied by the researcher based on the number of subsets of 
subgroup effects that reasonably would be exchangeable. 
Future studies could explore this extension.

Finally, one of the complications of studying effect 
modification is that it is scale-dependent. Comparisons of 
subgroup-specific ATEs on the difference scale might be 
smaller, larger, or non-existent than comparisons on the 
risk ratio and/or odds ratio scales. In fact, if baseline risk 
of an outcome varies across subgroups, then treatment 
effectiveness will vary on at least one scale. In this article, 
we focused on the risk difference scale, which is easy to 
interpret as well as the scale with greatest public health 
and policy importance [48, 49]. The approach we pre-
sented can be extended to other scales by shifting focus to 
estimating the potential outcome means under different 
treatment assignment and then combining them in the 
appropriate way. Identification and estimator derivation 
logic would remain the same but lead to the need to spec-
ify two hyperparameters—the standard deviation of mean 
difference under treatment and the standard deviation of 
mean differences under control—rather than just one—
the standard deviation of treatment effect differences.

Conclusions
In conclusion, the framework laid out in this article pro-
vides a way to quantitatively assess the impact of reporting 
only the SATE when there is disparity in representation 
across population subgroups. Estimators that borrow 
strength across subgroups, such as the RATE estimator, 
can reduce the inequitable impact at the data analysis 
stage. Ultimately, structural change regarding data collec-
tion and funding priorities is needed to address systemic 
disparities in sample representation [50].
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