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Abstract 

Background  Automated feature selection methods such as the Least Absolute Shrinkage and Selection Operator 
(LASSO) have recently gained importance in the prediction of quality-related outcomes as well as the risk-adjustment 
of quality indicators in healthcare. The methods that have been used so far, however, do not account for the fact 
that patient data are typically nested within hospitals.

Methods  Therefore, we aimed to demonstrate how to account for the multilevel structure of hospital data 
with LASSO and compare the results of this procedure with a LASSO variant that ignores the multilevel structure 
of the data. We used three different data sets (from acute myocardial infarcation, COPD, and stroke patients) with two 
dependent variables (one numeric and one binary), on which different LASSO variants with and without considera-
tion of the nested data structure were applied. Using a 20-fold sub-sampling procedure, we tested the predictive 
performance of the different LASSO variants and examined differences in variable importance.

Results  For the metric dependent variable Duration Stay, we found that inserting hospitals led to better predictions, 
whereas for the binary variable Mortality, all methods performed equally well. However, in some instances, the vari-
able importances differed greatly between the methods.

Conclusion  We showed that it is possible to take the multilevel structure of data into account in automated predic-
tor selection and that this leads, at least partly, to better predictive performance. From the perspective of variable 
importance, including the multilevel structure is crucial to select predictors in an unbiased way under consideration 
of the structural differences between hospitals.

Keywords  LASSO, Feature selection, Multilevel model, Hierarchical model, Hospital quality indicators, Risk-
adjustment, Nested data

Background
Performance metrics such as Duration Stay or indica-
tors of the quality of care such as Mortality Rates are 
widely used to assess healthcare providers’ performance. 
A broad branch of research has identified predictors that 
explain differences in such measures both at the patient 
as well as the provider level.

Recent improvements in data availability have 
increased the number of healthcare-related variables as 
possible predictors of these performance metrics (e.g., 

*Correspondence:
Stella Bollmann
stella.bollmann@ife.uzh.ch
1 Competence Center for Health Data Science, Faculty of Health Sciences 
and Medicine, University Lucerne, Frohburgstrasse 3, 6002 Lucerne, 
Switzerland
2 Institute of Education, University Zurich, Kantonsschulstrasse 3, 
Zurich 8001, Switzerland
3 Department of Statistics, TU Dortmund University, Vogelpothsweg 87, 
44227 Dortmund, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-023-02081-6&domain=pdf


Page 2 of 14Bollmann et al. BMC Medical Research Methodology          (2023) 23:280 

with regard to quality of care, see [43]). Consequently, 
the use of automated feature selection methods has also 
increased in healthcare research. Statistical tools like the 
least absolute shrinkage and selection operator (LASSO) 
and Bayesian additive regression trees (BART) have thus 
become more and more popular to facilitate variable 
selection.

Focusing more specifically on the quality of care of hos-
pitals, there are at least two important areas of research 
in which the selection of relevant predictor variables may 
be used: (i) the prediction of quality-related outcomes 
and (ii) the risk-adjustment of quality indicators.

With regard to the task of prediction, automated vari-
able selection is frequently used for prediction of hospital 
costs (see e.g., [3, 50]), but has also more recently started 
to be used for the prediction of quality-related outcomes. 
Studies using automated feature selection such as the 
LASSO have demonstrated its superiority in prediction 
accuracy [29].

Considering risk-adjustment, the variables to be used 
are traditionally selected based on theoretical consid-
erations or expert opinions. However, this established 
approach has been criticized for its intensive resource 
and time demands [13], lack of objectivity and transpar-
ency, poor to modest accuracy, and insufficient generaliz-
ability [29]. Therefore, automated feature selection using 
machine learning methods has become increasingly pop-
ular [22, 34] and has been shown to achieve similar (and 
in terms of generalizability even better) results than theo-
retical selections for the risk-adjustment of quality indi-
cators [13, 36].

All in all, there has been great progress in collecting 
large amounts of data to identify predictors for quality of 
care using automated variable selection methods both for 
prediction and risk-adjustment. However, all these stud-
ies face a methodological challenge that remains unre-
solved: the nested structure of the hospital data. We will 
now first show how multilevel models are already widely 
used as a means to account for the clustered structure of 
the data. Then, we will demonstrate why multilevel mod-
els should also be used for automated variable selection.

Multilevel models accounting for clustering in hospital 
data
No matter whether one is aiming to predict quality-
related outcomes at the patient level or measuring quality 
indicators at the hospital level, the data sets that are ana-
lysed are structured in a similar way: patients or hospital-
izations are nested within hospitals, while some variables 
are measured at the hospital and some at the patient 
level. Typically, a great amount of variability of the 
dependent variables (DV) of interest, like quality of care 
[40], mortality [15, 48], and readmissions [14], is found 

at the hospital level. Nevertheless, significant informa-
tion is lost when data is simply aggregated at the hospital 
level. Therefore, the method of choice for analysing such 
nested data sets are the so-called multilevel models or 
random effects models (see e.g., [8]).

When it comes to pure predictive performance, studies 
are inconclusive as to whether including random effects 
improves the prediction of quality measures. While some 
studies did not find significant improvements when 
including random effects (e.g., for predicting the mortal-
ity of corona artery bypass graft (CABG) surgery [28]), 
better performance of random effects models has, for 
example, been found when predicting return-visits [49] 
and risk-adjusted mortality for trauma patients [10].

Regardless of predictive performance, it has frequently 
been noted that ignoring the multilevel structure of hos-
pital data may lead to false conclusions, the so-called 
“ecological fallacy” (see e.g., [19, 20]). This is why using 
random effects models has previously been advocated 
(see e.g., [17]). In addition, it has been empirically shown 
that estimated relationships indeed change dramatically 
depending on whether hospitals are included as random 
effects or not [2, 31]. In risk-adjustment, it is particularly 
important to disentangle hospital-associated effects from 
patient-related influences, as risk-adjustment models are 
used to adjust quality indicators for the influence of dif-
fering patient samples of hospitals. Consequently, mul-
tilevel based risk adjustment models have been found to 
perform better than standard methods [26]. Therefore, 
random effects models have increasingly been used not 
only to analyse associations between predictors and qual-
ity outcomes (e.g., [4, 35, 40, 42]), but also for the risk-
adjustment of quality measures like mortality rates for 
COVID-19 patients [5], risk-adjusted mortality and mor-
bidity rates [17], emergency readmissions [14], and septic 
shock mortality [48].

Further evidence for the need to consider the multilevel 
structure of hospital data in risk-adjustment is provided 
by the fact that both the Centers for Medicare and Med-
icaid Services (CMS) as well as the American College of 
Surgeons (ACS NSQIP) have adopted a multilevel-based 
approach to risk-adjust their readmission rates [32] and 
adverse outcomes after surgery [11], respectively.

Based on the above, we conclude that there is rela-
tively great unanimity regarding the general importance 
of accounting for the multilevel structure of hospital data 
for two main reasons: the improvement of a) predictive 
performance, and even more importantly, b) unbiased 
variable selection and interpretation (see next section).

Accounting for clustering in variable selection
As discussed, there is relatively large agreement in the 
literature that multilevel structures (i.e. clusterings of 
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hospital data) must be considered in principle. Like-
wise, we could see that this is already done for analyses 
with manually selected predictors. However, in auto-
mated feature selection, clustering of hospital data is 
not yet sufficiently taken into account even though the 
consideration of the cluster structure is of great impor-
tance here. Neglecting the nested structure of data may 
alter estimated relationships (i.e. effect sizes) between 
the dependent and independent variables. A change in 
the effect sizes of the independent variables in turn may 
lead to differences in variable importance (in terms of the 
order of the variables by the absolute size of their coef-
ficients). This possibly leads to a) false interpretations, b) 
a bias in variable selection, and thus c) a bias in the sub-
sequent risk-adjustment, for which the selected variables 
are used.

To address this research gap, we investigate already 
existing methods to see how well they are able to perform 
exactly at this interface: Automatic variable selection for 
predicting quality of care variables in (nested) hospital 
data. Therefore, we chose a method that is particularly 
suitable for variable selection, as we will describe in more 
detail below: We investigated a variant of the variable 
selection technique LASSO that incorporates the estima-
tion of random effects (i.e., a LASSO for general linear 
mixed models (GLMMs, [25]). Our goals were, on the 
one hand, to examine whether taking hospital clustering 
into account provides better predictive performance, and 
on the other hand, to see whether it leads to a different 
set of selected variables. In the following chapter, we will 
first explain the idea of the LASSO for predictor selection 
in general before describing an alternative LASSO vari-
ant that accounts for the clustering of the data.

LASSO for predictor selection
Penalized regression, such as ridge regression [30], and 
LASSO [47], is a widely used method to overcome the 
problem of many predictor variables or a low ratio of 
number of observations to number of variables (includ-
ing the n << p case) and/or a high collinearity of vari-
ables. Unlike in ridge, where coefficient estimates can 
never actually reach zero, LASSO has the desirable fea-
ture to also enable variable selection. Hence, in our paper, 
where we are mainly interested in variable selection, we 
focus on LASSO.

Besides enabling variable selection, the LASSO method 
can also be helpful in situations where substantial multi-
collinearity between predictors exists. If there is a group 
of predictors among which the pairwise correlations are 
very high, then the LASSO tends to select only one pre-
dictor from the group (but does not care about which 
specific one is selected). If the multicollinearity is pro-
nounced, it is recommended to switch to a combination 

of ridge and LASSO, i.e. an elastic net [51] penalized ver-
sion. Accomodating the suggestion of an anonymous ref-
eree, we inlcuded one specific variant of elastic net into 
our analyses as a comparison, namely the “nearly LASSO 
variant” that sets the elastic net parameter α = 0.99999 . 
For implementation of these methods, we use the R pack-
age glmnet [21].

It is worth noting that penalization approaches typi-
cally involve at least one tuning parameter that needs 
to be optimized. For example, the LASSO penalty (see 
appendix) includes the penalty parameter � , which con-
trols the overall strength of the penalization.

In the case of clustered data, however, it would also be 
necessary to account for potential cluster-specific and 
unobserved heterogeneity during the variable selection 
process. This is of particular importance in the case of 
hospital data, where there can exist substantial heteroge-
neity among providers (see e.g., [15, 48]). However, one 
typically does not want to include all individual hospitals 
as (categorical) fixed-effect predictors into the model, 
because, on the one hand, this drastically increases the 
number of variables and may produce estimation prob-
lems, especially if the sample is small and/or the variables 
are highly correlated. On the other hand, one is typi-
cally not interested in the individual hospital (dummy) 
effect parameters but rather in identifying the underly-
ing causes for differences between hospitals and general-
izing to the population of all hospitals. Nevertheless, we 
believe that it would be important to include individual 
hospital-effects into LASSO models because this may: 

a)	 make predictions more accurate;
b)	 lead to less biased estimates for the predictors;
c)	 and conversely to less biased risk-adjustment models 

for quality indicators.

Hence, the incorporation of random intercepts for hospi-
tals into the regularized regression model may be the best 
solution for the problem at hand. One specific LASSO 
implementation including random effects is available 
in the glmmLasso R package [24] within the GLMM 
framework.

Subsequently, we present our investigation of the inclu-
sion of hospitals as random effects in several variable 
selection scenarios using the glmmLasso R package and 
the comparison with the traditional approach without 
considering the nested data structure using glmnet.

Methods
Data source
We used a national health administration data set pro-
vided by the Swiss Federal Statistical Office. It contains 
all inpatient cases treated in Swiss hospitals in 2019 with 
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their diagnosis codes (ICD-10-GM, [16]), procedure 
codes (CHOP, [45]), diagnosis-related groups (Swiss-
DRG, [46]), and other clinically relevant variables, such 
as the admission and discharge conditions as well as 
demographic information like age and sex. We focused 
on three different patient populations: (i) COPD: patients 
with a main diagnosis of chronic obstructive pulmonary 
disease (n = 12,404), (ii) stroke: patients with a main 
diagnosis of stroke (n = 23,276), and (iii) heart attack: 
patients with a main diagnosis of myocardial infarction 
(n = 19,242). All patients were older than 18 years of age, 
but aside from the focus on the selected main diagno-
ses and the age of the patients, no additional restrictions 
were applied. Since the data are provided in a standard-
ized form, they do not contain any missing values.

For all data sets, we predicted the continuous DV 
Duration Stay that indicates how many days a patient 
was hospitalized. Additionally, we predicted the binary 
DV Mortality that indicates whether a patient died dur-
ing the hospitalization. In doing so, we aimed to exam-
ine how well the different LASSO variants can deal with 
both continuous and binary data. Because of the greatly 
increased computational cost of some procedures when 
using the binary variable (Mortality), the largest data set 
(stroke) was reduced to a random sample of 40% of the 
hospitalizations within that patient population.

For our different investigated dependent variables, we 
obtained the following descriptive statistics: The overall 
percentage of mortality is 3.39% in the COPD data, 6.67% 
in the stroke data, and 4.33% in the heart attack data. The 
mean Duration Stay is 10.49 (sd = 8.50) days for COPD 
patients, 15.87 (sd = 22.12) days for stroke, and 6.43 (sd = 
7.41) for heart attack patients.

For the DV Duration Stay, only observations with val-
ues larger than zero were included. Moreover, the follow-
ing data preparation procedures were performed for all 
three data sets: to avoid extreme collinearities, the vari-
able with a lower bivariate correlation in relation to the 
respective DV was excluded from each pair of predictors 
that had an (absolute) correlation above .95 (indicating a 
threshold, above which we started to experience compu-
tational problems in some settings).

In addition, all predictors were scaled to have the same 
variance prior to model estimation, which is necessary 
for the proper use of LASSO techniques to avoid selec-
tion bias in favour of variables with higher variance (see 
appendix for a list of all candidate predictor variables).

Performance measures
We used a 20-fold sub-sampling procedure to evalu-
ate the predictive performance of the different LASSO 
methods that will be described in the next section. 

Since some of our models also contained random effect 
estimates for each hospital, which can be used for the 
calculation of the deviance, we decided to include the 
requirement that each hospital from the test data was 
also represented in the training data with at least one 
observation. This restriction is the reason why our sub-
sampling procedure is not a traditional 20-fold cross-
validation. For each sub-sample run, the entire data 
set was randomly split into two parts, so that 1/20 of 
the cases are chosen as test data and the rest as train-
ing data. This was repeated 20 times. However, the 
resulting test data are not necessarily mutually exclu-
sive from one sub-sample run to the next. The resulting 
20 training and test data sets were created once at the 
beginning for each of the three data sets and were then 
used for all analyses for greater comparability. Further-
more, whenever a variable had zero variance in one of 
the sub-samples, the variable was removed to make the 
scaling of all variables possible.

The DV Duration Stay was highly positively skewed 
and therefore needed to be log-transformed before the 
analyses. In the appendix, figures are provided show-
ing the qq-plots of the original and log-transformed DV, 
respectively.

To assess predictive performances, for the DV Dura-
tion Stay, we used the root mean squared error (RMSE) 
on the test data, averaged over the 20 sub-samples:

For the binary DV Mortality, we used four different 
measures of predictive performance:

(i) the area under the Receiver Operator Characteristic 
(ROC) curve (AUC, [27]). The ROC curve plots the True 
Positive Rate (TPR) against the False Positive Rate (FPR). 
The TPR is defined as

where TP is the number of cases that were correctly clas-
sified as positive and FN is the number of cases that were 
falsely classified as negative. And the FPR is defined as

with FP being the number of cases falsely classified as 
positive and TN being the number of cases correctly clas-
sified as negative.

(ii) the area under the Precision-Recall (PR) curve 
(AUPRC, [12, 23]). The idea of the PR curve is similar 

(1)RMSE =
1

n

n

i=1

(yi − µ̂i)
2

(2)TPR =
TP

TP + FN
,

(3)FPR =
FP

TN + FP
,
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to that of the ROC curve, but it plots the recall on the 
x-axis and the precision on the y-axis. Recall is the same 
as TPR, whereas precision is what is also called the Posi-
tive Predictive Value (PPV):

The AUPRC was shown to be more informative than 
the AUC for imbalanced data (e.g. [41]).

(iii) the Brier score (BS, [7]), defined as the average 
square difference between observed values ( yi ) and pre-
dicted probabilites ( p̂i ) (therefore equivalent to the mean 
squared error):

and (iv) the predictive Bernoulli likelihood (BL):

All those measures were averaged over the 20 sub-sam-
ples. Since the AUC is the most commonly used meas-
ure in medical sciences, we focused our interpretation on 
this and only reported the others as an addition. In con-
trast to the RMSE, the AUC is readily comparable across 
studies, with high values indicating good performance.1 
Generally accepted guidelines for AUC values indicate 
that values above .70 can be considered as acceptable dis-
crimination, and values above .80 as excellent discrimina-
tion (see e.g. [33]). However, those cut-off values should 
be interpreted with caution.

Additionally, for the DV Duration Stay, we examined 
how variable importance and thereby variable selection 
changes when hospitals are included. More precisely, 
we were interested in which variables are considered the 
most important for each LASSO variant. To this end, we 
registered the five variables from all 20 data sets with 
the largest absolute coefficients in the model selected 
via cross-validation and included information on how 
often each of them was among the five most important 
over the course of the 20 sub-samples. Hence, in line with 
the concept of stability selection [38], we define variable 
importance as the percentage a variable was selected in 
this process across the 20 sub-samples.

(4)PPV =
TP

TP + FP

(5)BS =
1

n

n
∑

i=1

(yi − p̂i)
2

(6)BL =
1

n

n
∑

i=1

p̂
yi
i (1− p̂i)

1−yi

Investigated LASSO variants
As previously mentioned, we generally distinguished 
between standard, fixed-effects-only LASSO models 
(via glmnet) and the LASSO variant including ran-
dom effects (via glmmLasso). In addition, we included 
glmnet with fixed-effects for the hospitals as an inter-
mediate solution for comparison with the two other 
approaches. Adaptive LASSO versions were also inves-
tigated in glmnet, but they lead to similar results and, 
hence, these are not presented here.

Consequently, the different models we compared were: 
(i) No hosps, in which a traditional LASSO is used with-
out any hospital effects; (ii) Hosps fixed, in which the 
hospitals are included as a categorical predictor in a tra-
ditional fixed-effects LASSO model; and (iii) Hosps ran-
dom, in which hospitals are included as random effects.

As mentioned above, the LASSO penalty includes the 
tuning parameter � that determines the strength of the 
penalization. Typical procedures for the tuning of � are 
K-fold cross-validation (CV), which is the default in the 
function cv.glmnet(·) from the glmnet package. 
Another alternative would be information criteria-based 
approaches using Akaike’s information criterion (AIC) 
[1] or the Bayesian information criterion (BIC) [44], also 
known as Schwarz’s information criterion, with the dif-
ference that BIC tends to favor sparser models.

Finally, in addition to the standard LASSO-estimates, 
we also calculated the so-called post-LASSO estimates, 
which are based on the idea of the relaxed LASSO [37] 
and were recently implemented in glmnet via the 
relax argument. These are also available in glmmL-
asso by setting the final.re=TRUE argument. The 
main idea of the post-LASSO is that once the variables 
are selected given a certain � from the investigated grid of 
penalty parameters, this set of “active” variables is used to 
re-fit an unregularized model (e.g., via conventional max-
imum likelihood). The optimal penalty parameter is then 
tuned based on these post-LASSO estimates. In contrast 
to the standard LASSO that we call classic in the follow-
ing, this approach will be referred to as post. For all meth-
ods and data sets, we examined both estimation with the 
post-LASSO (post) and without (classic).

LASSO with only fixed effects
For both the No hosps and Hosps fixed models, we used 
the R implementation glmnet [21] to estimate a clas-
sical LASSO-penalized regression model. The glmnet 
algorithm internally selects the optimal � using the devi-
ance (in case of a normally distributed DV, deviance cor-
responds to the MSE) in a 10-fold cross validation.

A suitable grid of � values on which this validation is 
performed is automatically chosen by the function. After 
the optimal � is selected, the LASSO is fitted again on the 

1  Note that it can be shown that the sample variance and standard deviation 
are, respectively, the MSE and the RMSE of the naive predictor. Therefore, 
scaled MSE and RMSE represent the relative efficiency of the current pre-
dictor compared to the naive one, which, in principle, makes them compa-
rable across different studies provided that the unit of measurement is the 
same.
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entire data. Please note that two options for model selec-
tion are provided: �min is the � that yields the minimal 
deviance and �1se is the largest value of � such that the 
error is within one standard error of the minimum. In 
addition, we also used AIC and BIC (as they are used in 
glmmmLasso, see below) as selection criteria and com-
pared their results with �min and �1se.

The LASSO with hospitals as random effects
For Hosps random, we use the R package glmmLasso 
[25]. Unfortunately, this package does not yet provide an 
automated mechanism for the specification of a suitable 
� grid on which to perform the internal cross validation. 
Therefore, we manually determined a � grid consisting of 
100 � values, so that for the highest � in that grid not a 
single variable is selected and all corresponding coeffi-
cients are shrunk to zero. Within the first five � values of 
that grid, the number of selected variables increases to at 
least one. In each iteration of the algorithm, the fit from 
the previous iteration is handed over as a starting point 
for the fixed effects and random intercepts.

When using AIC or BIC as an optimality criterion 
in the tuning procedure, the model is estimated on the 
entire data for each � and the resulting AIC or BIC are 
obtained. Predictions from the model with the lowest 
AIC or BIC, respectively, are then used to calculate the 
predictive performance. For illustration purpose, we 
show the BIC plot for the determination of the optimal 
� as well as the corresponding coefficient path plot (see 

Figs.  1 and  2) for one arbitrary training data set (using 
COPD patients). In the BIC plot, the resulting BIC is 
shown for each � from the � grid (in this example from 
266 to 0). The lowest BIC obtained is for a � = 51.05 . In 
Fig. 2, the paths of the estimated coefficients for all vari-
ables are shown for each � . It can be seen that the worst 
model fit is that for � values close to the maximum, 
where all coefficients are shrunk to zero and, hence, no 
variable is selected. Reading from right to left, the BIC 
then decreases and reaches its minimum for � ∈ [50; 60] 
before increasing again.

When using CV-based tuning, the training data is split 
into 5 folds to be used in a 5-fold cross-validation. The 
optimal � is determined based on the deviance. Then, 
the model is estimated again on the entire training data 
using this optimal � and predictions are obtained from 
that final model on the test data to calculate the predic-
tive performance. In line with the models No hosps and 
Hosps fixed, the model resulting from this optimal � will 
be called �min . Unfortunately, in the glmmLasso pack-
age, the �1se option is not available and will therefore not 
be reported. All analyses were performed using the sta-
tistical software program R [39].

Results
Predictive performance
Duration stay
The MSEs for all classic variants (in contrast to the post-
LASSO variants that we will briefly discuss in the next 

Fig. 1  BIC plot for glmmLasso for one subsampled training fold of the COPD data
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paragraph) are summarized in Fig. 3 in three subfigures 
for the three data sets, respectively. The results are based 
on averaged MSEs over the 20 sub-sample iterations. In 
the COPD data, it can be seen from Fig. 3a that includ-
ing the hospitals, whether as fixed or as random effects, 
leads to considerably better results. However, there is lit-
tle difference between the different variants of including 
the hospitals and the various optimization criteria within 
those variants, except that the MSE is larger for the Hosps 
fixed BIC. Taking a closer look at the different condi-
tions, we can see that within glmnet, the �1se optimiza-
tion criterion seems to achieve better results than �min 
in both variants. In the stroke data, including hospital 
effects also revealed better predictive performance than 
not including them (see Fig.  3b), and within the hosps 
random variant, AIC and BIC performed worse than CV. 
Figure 3c shows that in the heart attack data, Hosps fixed 
performed best on average and the variants without the 
inclusion of hospital effects performed the worst. Hosps 
fixed is slightly better than Hosps random in this data set, 
but the effect is negligible.

The post-LASSO variant on average performed worse 
than the classic variant for both DVs, with higher MSEs 
or lower AUC values, respectively, and larger standard 
errors. For this reason, we do not go into detail regard-
ing their interpretation. However, an exemplary plot is 
shown in the appendix.

The analyses for the “nearly LASSO variant” suggested 
by an anonymous reviewer resulted in exactly the same 
predictive performance values as the LASSO variant 

for all data sets and all outcome variables. We therefore 
refrain from reporting them here.

Mortality
Figure 4 shows mean AUC values and standard error bars 
for the results of the different  LASSO variants on the 
binary DV Mortality in the three data sets. According to 
generally accepted thresholds (see e.g., [33]), all variants 
achieved excellent performance in the stroke data and 
even better performance in the heart attack data. In the 
COPD data, the performances were slightly lower and 
showed more variability. Additionally, the AUC values 
showed only small differences between the different vari-
ants. In the stroke data, a slight advantage of the Hosps 
random model can be observed. Most of the differences 
seem to occur when comparing different optimization 
criteria, with �min and AIC criteria performing a little 
better than the others, at least in the first two data sets. 
This finding could be because those criteria in general 
select more variables than the other two, which appears 
to be the better solution in those data sets. In the stroke 
data, for example, No hosps with �min variant selects 39.9 
variables on average, with �1se 17.6, with AIC 45.2, and 
with BIC 35.95. Hosps random with �min (which achieves 
the best performance) selects 44.25 variables on average, 
with AIC 42.7, and with BIC 18.8 variables on average.

The results are less clear when comparing the Brier 
score or the predictive Bernoulli likelihood between the 
variants. Here, almost no systematic variation between 
mean performance measures could be found (see 

Fig. 2  Coefficient paths plot for glmmLasso for one subsampled training fold of the COPD data
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Table  1). However, the highest performance per data 
set and criterion (printed in bold in Table 1) was always 
found in a model which accounts for the hospital effects 
in some way.

Variable importance
A summary of the variable importance (defined as the 
rate of being among the five most important variables 
in the model selected by CV across all sub-samples) 
for the COPD data is provided in Table  2. The variable 
importances for the other two data sets are shown in the 
appendix.

The results show that the variable importances dif-
fer between the different variants depending on the 

inclusion of hospital effects. Particularly interesting is 
the variable Planned admission. In both the COPD and 
heart attack datasets, this variable has an importance of 
100% in the No hosps variant that drops to 0% in the 
two variants where hospitals are included. This vari-
able specifies whether patient admissions were planned 
and thus distinguishes elective from emergency admis-
sions. It has a large positive effect on Duration Stay 
whenever hospitals are not specifically included in the 
variable selection. This may be because the frequency 
of planned admissions can be a structural difference 
between hospitals and, therefore, the importance of 
this variable disappears in models where hospital 
effects are considered as well. In the COPD data for 

Fig. 3  RMSE (means and standard deviation bars) for the DV Duration Stay in the three data sets, respectively
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example, 14.49% of hospitals have no planned admis-
sions at all, while 22.46% of hospitals have only planned 
admissions. This makes sense with regard to the health-
care system in Switzerland, where certain hospitals 
(such as private clinics) can focus on planned (i.e., elec-
tive) patients (compared to emergency patients), while 
other hospitals (such as general hospitals) cannot do 
so because of their service mandate. Thus, it could be 
argued that not including hospital effects in the fea-
ture selection leads to a biased selection of variables, 
such as Planned admission, which implicitly distin-
guish between the service mandates of hospitals (rather 
than the selection of more suitable variables directly 
linked to the patient characteristics). In the stroke data, 
Planned admission similarly becomes less important 

when including hospital effects, but only when includ-
ing them as random effects.

A contrary effect can be observed for the variable 
elix23 that denotes the Elixhauser comorbidity group 
“weight loss” according to the categorization by Elix-
hauser [18], which has a positive effect on Duration 
Stay. In all three data sets, this variable becomes far 
more important when hospitals are included, which 
may suggest that it is not as much associated with 
Duration Stay on a between-hospital level as it is on a 
within-hospital level. Such effects can be caused by very 
different classification thresholds in different hospitals. 
Or it could be that the importance of this (and similar) 
variable(s) related to patient characteristics become 
more relevant and are thus selected more frequently if 

Fig. 4  AUC (means and standard deviation bars) for the DV Mortality in the three data sets, respectively
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other variables associated with the service mandate of 
hospitals (such as the variable Planned admission) are 
selected less often.

In the stroke data, there are a couple of other vari-
ables that are less important when including hospitals 
into the model in general. Those are: Emergency, indi-
cating whether a patient was admitted as an emergency, 
From home, indicating whether a patient was admitted 
from home, and, to a lesser extent, From hospital, indi-
cating whether the patient was admitted from another 
hospital. One can also see that the Elixhauser groups 
are only important when hospital effects are taken into 
account, similar to what has been found in terms of the 
comorbidity group “weight loss”. Rather, it seems that 

either hospitals differ a lot in whether their patients 
have such comorbidities or they differ in how consci-
entiously these comorbidities are coded in their admin-
istrative data. Or alternatively, as pointed out above, it 
could be that such variables related to patient condi-
tions become more important, when variables associ-
ated with the service mandate of hospitals are selected 
less frequently (due to the inclusion of hospital effects). 
The specific interpretation of the individual effects of 
the selected variables is complicated by the fact that 
they would have to be interpreted depending on the 
effects of all the other variables. Thus, we refrain from 
going into detail in our interpretation of the variables, 
but the main finding across all investigated patient pop-
ulations is the fact that different variables are selected 
depending on whether the hospital effects are consid-
ered or not.

To further illustrate the trajectories of a few exemplary 
variable importances, we also created three coefficient 
path plots for a randomly selected sub-sample of the 
heart attack data set (see Fig. 5). As in Fig. 2, these plots 
show how the magnitude of the coefficients changes with 
decreasing penalization (lambda) (read from right to left). 
In Fig.  5, four of the variables are specially highlighted. 
Thus, one can clearly see how the variable Planned 
admission rises very quickly in the No hosps variant 
(Fig. 5a) and remains at a high level, while in the Hosps 
fixed variant (Fig. 5b), it also rises sharply to begin with 
but then falls again with an increasing number of hos-
pitals inserted. In the Hosps random condition (Fig. 5c), 
where hospitals are included from the start, this variable 
is less important from the beginning. The other three 

Table 1  Averaged performance measures over 20 folds for the DV Mortality 

Note. AUPRC: Area under the Precision-Recall curve; Brier: Brier score; PBL: predictive Bernoulli likelihood. In brackets: Standard errors. The highest number per line is 
marked in bold

No hosps Hosps fixed Hosps random

�min �1se AIC BIC �min �1se AIC BIC �min AIC BIC

COPD data
AUPRC .12 (.009) .11 (.008) .12 (.009) .11 (.008) .15 (.017) .12 (.013) .14 (.012) .12 (.009) .14 (.020) .12 (.011) .12 (.011)

Brier .032 (.001) .032 (.001) .032 (.001) .032 (.001) .032 (.001) .032(.001) .031(.001) .032 (.001) .032 (.001) .032 (.001) .032 (.001)

PBL .938 (.001) .937 (.001) .938 (.001) .937 (.001) .939 (.001) .938 (.001) .938 (.001) .936 (.001) .938 (.002) .938 (.002) .935 (.002)

Stroke data
AUPRC .28 (.021) .27 (.020) .28 (.020) .28 (.020) .25 (.020) .28 (.021) .18 (.026) .21 (.030) .29 (.024) .28 (.026) .28 (.026)

Brier .055 (.002) .056 (.001) .055 (.001) .055 (.001) .055 (.001) .055 (.001) .055 (.001) .055 (.001) .052 (.002) .055 (.002) .055 (.002)

PBL .892 (.002) .890 (.002) .892 (.001) .890 (.001) .893 (.001) .892 (.001) .893 (.001) .889 (.001) .901 (.004) .893 (.004) .889 (.003)

Heart attack data
AUPRC .28 (.010) .28 (.010) .28 (.010) .29 (.011) .29 (.011) .28 (.010) .31 (.013) .28 (.011) .29 (.010) .29 (.010) .29 (.010)

Brier .034 (.001) .035 (.001) .034 (.001) .034 (.001) .034 (.001) .035 (.001) .033 (.000) .033 (.001) .034 (.001) .034 (.001) .034 (.001)

PBL .931 (.001) .930 (.001) .932 (.001) .930 (.001) .932 (.001) .930 (.001) .933 (.001) .930 (.001) .932 (.001) .933 (.001) .931 (.001)

Table 2  Variable importances for the CV selected model 
concerning COPD data for the DV Duration Stay 

Note. Rates of being among the five most important variables (according to 
absolute values of regression coefficients) across the 20 sub-samples in percent; 
in brackets: mean estimated regression coefficient over all sub-samples

Variable no hosps hosps fixed hosps random

Adm from hospital 100% (.16) 100% (.11) 100% (.10)

Pre-MDC 100% (.22) 100% (.17) 100% (.19)

Part medical 100% (-.21) 100% (-.19) 100% (-.23)

MDRG E65 100% (.25) 100% (.13) 100% (.18)

elix 23 0% (–) 100% (.11) 100% (.11)

Planned admission 100% (.13) 0% (–) 0% (–)

elix 1 0% (–) 100% (.07) 0% (–)

elix 30 0% (–) 100% (.07) 0% (–)

elix 24 0% (–) 70% (.06) 0% (–)

Emergency 0% (–) 30% (-.06) 0% (–)
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highlighted variables, on the other hand, show very simi-
lar patterns in all three variants.

Discussion
The purpose of this study was to account for hospital 
clustering while performing automated variable selection 
with a particular regard to the predictors of hospital per-
formance and quality of care. We applied three different 
LASSO variable selection variants: i) without hospitals, 
ii) with hospitals as fixed effects, and iii) with hospitals 
as random effects on three different patient data sets. We 
first examined how their predictive performance differs 
and second how their variable selection differs.

We found an improvement in predictive performance 
in models that include hospitals compared to those that 
do not include them in most scenarios. This is in line with 
some previous findings (e.g., [10, 49]), but contradicts 

others (e.g., [28]). Therefore, it may be concluded that 
whether accounting for hospital clustering improves pre-
dictive performance depends on the data, but it at least 
does not distort predictive performance.

More importantly, however, we found that variable 
importance changes when hospitals are included. Some 
variables go from being among the top five for all 20 sub-
samples to no longer being in the top five for any of the 
sub-samples when hospital effects are included. These 
findings are in line with results from other studies that 
examined predictive performance after the manual selec-
tion of features (e.g., [2, 31]). In these previous studies, it 
could also be shown that the estimates of the association 
between variables differed considerably, depending on 
whether or not random effects were included. Such dif-
ferences can, of course, lead to completely different inter-
pretations of dependencies between predictor variables 

Fig. 5  Coefficient paths plot for heart attack data DV Duration Stay 
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and the DV, as has already been stressed previously [19, 
20]. Another consequence of our results is that the com-
parison of selection results from different approaches 
(i.e., with or without the consideration of hospital effects) 
could be used to learn about dependencies within the 
data in a data-driven way. More specifically, it may sup-
port researchers to assess which variables are mainly 
associated with hospital differences and which are pri-
marily related to patient differences.

Based on these findings, we recommend that the natu-
ral clustering of hospital data already should be consid-
ered when selecting predictor variables for prediction 
purposes or the risk-adjustment of quality indicators, in 
contrast to only considering it in the final modeling stage 
(once the predictors have been selected). This approach 
leads to predictions that are better or at least as good as 
when not considering hospital effects. In addition, when 
hospital effects are not included, interpretations of the 
importance of predictor effects and therefore depend-
encies among variables can be distorted. This may be of 
particular importance for the selection of variables for 
the risk-adjustment of quality indicators, as risk-adjust-
ment aims to control for patient characteristics but not 
treatment differences among hospitals. Furthermore, as 
has been shown in previous studies, the performance of 
risk-adjustment methods increases when including ran-
dom effects [26]. As mentioned earlier, variable selection 
for risk-adjustment procedures is increasingly conducted 
in a data-driven way, especially since the traditionally 
used theory- or expert-based approaches have come 
under criticism (e.g., [13, 29, 34]). However, in our opin-
ion, doing so correctly would entail making use of the 
existing possibilities (e.g., the R package glmmLasso) to 
include the naturally occurring hierarchical structure of 
the data. This may be especially important if, as is com-
monly the case, hierarchical modeling is intended to be 
used for risk-adjustment after the feature selection has 
been conducted.

For the different optimization criteria (AIC, BIC, 
CV), no major difference was found. The AIC/BIC 
based approaches have the advantage of being signifi-
cantly faster because of their lower computational costs. 
However, in cases where the computation speed is not 
important, it may be advisable to use the default setting 
in glmnet, which is cross validation, and to use this for 
comparisons with glmmLasso as well.

It has to be stressed that the focus of this paper was 
on variable selection and interpretation in important 
healthcare application settings. As such, we target 
researchers who are interested in detecting predictors 
and interpreting their association with the dependent 
variable. An important use case is the variable selec-
tion for risk-adjustment models of quality indicators. 

Linear models are typically used here because inter-
pretation and understandability are essential. Including 
hospitals as fixed effects would not be suitable in this 
situation, because the developed models are designed 
to describe relationships between patient characteris-
tics and the outcome variable independent of the hos-
pitals’ performance. For this reason, our Hosps fixed 
models were merely used as comparison in this study, 
but our main goal was to contrast the No hosps and 
Hosps random models. However, if one is mainly inter-
ested in predictions of the dependent variable on new 
data, there are other machine learning approaches that 
are worth considering as e.g. XGBoost [9] or Random 
Forest [6], which could include the hospitals as simple 
fixed effects.

In addition, it is worth noting that the above-mentioned 
tuning parameter alpha for elastic net does not have to 
be set to 0.99999 but can also be tuned in a data-driven 
way. This tuning process can be programmed using the 
cva.glmnet function in the glmnet add-on pack-
age glmnetUtils. However, one should be aware that 
especially with large data sets, the additional tuning of a 
further parameter means additional computational costs. 
An even more important reason why we did not include 
this variant in the present work is that for glmmLasso 
no elastic net version is yet implemented and, hence, it 
can only be investigated for the glmnet versions (i.e. 
the approaches without random effects). For this reason, 
the classical elastic net version cannot be compared for 
the different modeling strategies of the hospital effects, 
which were investigated in this study.

Study limitations
It must be noted that the performance of glmmLasso 
still depends greatly on the quality of the � grid. Another 
related technical limitation is the fact that the approach 
used in the implementation glmmLasso is computa-
tionally expensive and thus time-consuming.

Moreover, there is a general limit to how much a varia-
ble selection process can be automated. Even when using 
a technique that can deal with a great number of variables 
like the LASSO, the candidate predictors must be cho-
sen in some way. Thus, a domain expert needs to make 
certain decisions regarding the variables, such as which 
data sources to use; how to operationalize, calculate or 
transform the variables; and which variables to exclude. 
Theoretical or domain-specific knowledge will always be 
required for this purpose. Similarly, when interpreting 
the results, an expert is needed to provide insights into 
the underlying causes of the findings and/or the possible 
dependencies among the variables.
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Conclusion
Our research presents an approach to include the clus-
tering of hospital data in variable selection for predict-
ing quality-related outcomes and risk-adjusting quality 
indicators. The predictive performance of the investi-
gated glmmLasso (under the consideration of hospi-
tal effects) is at least as good or better than that of the 
more traditionally used glmnet (without the inclusion 
of hospital effects). Furthermore, in line with previous 
studies, we have found that neglecting the clustered 
structure of the data may lead to biased parameter 
estimates and potentially false conclusions. This is 
especially important in the context of risk-adjust-
ment, where a careful selection of variables is pivotal. 
Therefore, we conclude that automated feature selec-
tion, which considers the nested data structure, is the 
method of choice for the prediction of quality-related 
outcomes and the risk-adjustment of quality indicators.
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