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Abstract

Background Cancer surveillance researchers analyze incidence or mortality rates jointly indexed by age group
and calendar period using age-period-cohort models. Many studies consider age- and period-specific rates

in two or more strata defined by sex, race/ethnicity, etc. A comprehensive characterization of trends and patterns
within each stratum can be obtained using age-period-cohort (APC) estimable functions (EF). However, currently
available approaches for joint analysis and synthesis of EF are limited.

Methods We develop a new method called Comparative Age-Period-Cohort Analysis to quantify similarities and dif-
ferences of EF across strata. Comparative Analysis identifies whether the stratum-specific hazard rates are proportional
by age, period, or cohort.

Results Proportionality imposes natural constraints on the EF that can be exploited to gain efficiency and simplify
the interpretation of the data. Comparative Analysis can also identify differences or diversity in proportional rela-
tionships between subsets of strata (‘pattern heterogeneity”). We present three examples using cancer incidence
from the United States Surveillance, Epidemiology, and End Results Program: non-malignant meningioma by sex; mul-
tiple myeloma among men stratified by race/ethnicity; and in situ melanoma by anatomic site among white women.

Conclusions For studies of cancer rates with from two through to around 10 strata, which covers many outstanding

questions in cancer surveillance research, our new method provides a comprehensive, coherent, and reproducible
approach for joint analysis and synthesis of age-period-cohort estimable functions.

Keywords Age-period-cohort model, Lexis diagram, Cancer surveillance research, SEER program

Introduction

In cancer surveillance research [1], a basic unit of analysis
is a matrix of incidence or mortality hazard rates jointly
indexed by age group and calendar period [2]. Alongside
classical [3, 4] and contemporary [5-8] descriptive meth-
ods, the age-period-cohort (APC) model provides an
established paradigm to quantify rate patterns and trends
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along each temporal direction — age, period, and birth
cohort — adjusted for the other two [9].

There are several formulations of the age-period-
cohort model for cancer research [10]. Here, we will
focus on estimable functions (EF) of the parameters in
an extended version [11] of Holford’s classic model [12].
EF are linear combinations of model parameters that
are invariant with respect to identifiability constraints
imposed on the model parameters to account for co-line-
arity between year of birth, year of event and age at event.

A comprehensive set of EF are available [13] based
on the extended age-period-cohort model [11] (hence-
forth, the “New Model”). Amongst them, Local Drifts
(LD) [14—17] and Cohort Rate Ratios (CRR) [18-20],
are especially useful. For example, LD and CRR curves
for colorectal cancer [14] provided critical evidence
that prompted the ACS [21], the USPSTF [22], and the
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MSTF [23] to reevaluate the evidence and recommend
that individuals in the United States at average risk
begin colorectal cancer screening at age 45, down from
age 50.

In practice, few studies examine a single rate matrix in
isolation. Typically, hypotheses are explored by examin-
ing multiple sets of rates (strata) defined by sex, race/
ethnicity, geographic region, tumor characteristics, etc
[24-28]. Even so, currently available methods are lim-
ited to quantify similarities and differences of EF across
strata.

Riebler et al. [29-31] considered stratified APC mod-
els with common age effects and smoothing priors on
the second differences of the period and cohort effects,
with estimates obtained by Markov Chain Monte Carlo
(MCMC) and integrated nested Laplace approxima-
tions. Reimers et al. [32] used standard Wald tests to
compare identifiable APC trend parameters in sepa-
rate models fitted to each stratum, while Chien et al.
[6, 33] compared summary statistics obtained from
Lexis diagrams smoothed using Bernstein polynomials
and MCMC. Most studies to date have relied on purely
descriptive comparisons, which makes it challeng-
ing for researchers to draw objective and reproducible
conclusions.

Frequently, the number of relevant strata G is around
10 or less. In this paper we present a novel approach to
tackle these essential small G problems, which include
studies of sex differences, racial and ethnic dispari-
ties, regional differences, tumor heterogeneity, etc.
We call our new approach Comparative Age-Period-
Cohort Analysis (“Comparative Analysis”). This work
generalizes previous results for two-hazard problems
[34]. Comparative Analysis is now made possible by
the New Model via its fundamental decomposition
principle.

Our approach makes three key assumptions. First,
the stratum-specific hazard rates are available over the
same age groups and calendar periods. This is always so
for data obtained from official cancer registries. Second,
the hazard rates are statistically independent within and
between strata. This is always a reasonable basis for anal-
ysis when the cases in each stratum are different people,
for example, for cases within strata defined by sex, demo-
graphic subgroup, geographic region, etc. Third, when we
fit a separate New Model to each stratum, no concerning
lack of fit (LOF) is detectable. This is the most important
assumption. Current methods to assess LOF include esti-
mating over-dispersion parameters, comparing observed
and fitted values, and examining residuals. In those cases
where the LOF is notable, one remedy is to split the rate
matrix into blocks within which the LOF is minimized.
See Best et al. [35] for details.
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Comparative Analysis provides a comprehensive,
coherent, and reproducible characterization of simi-
larities and differences of EF across two, three, or more
strata, along with efficient (model-based) estimates of EF
and EF differences, including Local Drifts. It does so by
identifying whether the stratum-specific hazard rates are
proportional along one of the three fundamental tempo-
ral directions (age, period, or birth cohort). As we will
show, when proportionality exists, it imposes natural
constraints on the EF that can be exploited to gain effi-
ciency and simplify the interpretation of the data.

Comparative Analysis can be conducted using a
“hypothesis testing” approach or an “exploratory”
approach. In the former, we aim to characterize pro-
portionality across all the strata. In the latter, we don't
know a priori which stratum in the set — if any — might
have rates that vary in concert. Therefore, our aim is to
describe pattern heterogeneity. This can be accomplished
by modeling the rates within partitions of the strata.

We will illustrate both approaches using data from
the United States Surveillance, Epidemiology, and End
Results (SEER) Program [36].

Data

SEER cancer incidence

We present three examples: 1) non-malignant meningi-
oma by sex; 2) multiple myeloma among men stratified
by race/ethnicity; 3) In situ melanoma by site among
non-Hispanic white women. In our analyses race/ethnic
groups are non-Hispanic white (NHW), non-Hispanic
black (NHB), Hispanic (HIS) and Asian and Pacific
Islander (API). Melanoma sites are head and neck (HN),
upper limb (UL), trunk (Tr) and lower limb (LL). See
Online Supplement Part 1 for details.

Canonical case: a two-hazard problem

Figure 1 presents Lexis diagram heat maps for meningi-
oma incidence among NHW women (Panel A) and men
(Panel B). The heat maps reflect something we already
know — meningioma incidence is higher among women.
More revealing, the corresponding female-to-male Cross-
Hazard Rate Ratios (CH-RRs, Panel C, bubble plot) show
that the female excess is mostly constant over time (i.e.,
across the rows) but increases with decreasing age (i.e.,
down the columns).

A four-hazard problem: multiple myeloma

Figure 2 presents Lexis diagram heat maps for multiple
myeloma incidence among men within four race/ethnic
groups (Panels A — D). The heat maps reflect that mye-
loma incidence is highest in NHB and lowest in APL
Compared to NHW, corresponding CH-RRs for NHB
versus NHW (Panel E), HIS versus NHW (Panel F), and
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Fig. 1 Meningioma incidence. Lexis diagram heat maps for meningioma incidence among NHW women (A) and men (B). See Online Supplement
Part A for details. Inside colorbar shows color-mapped rates per 100,000 person-years. Bubble plot shows corresponding female-to-male
cross-hazard incidence rate ratios (CH-RRs, C). CH-RR values are denoted by area and color (outside colorbar)

API versus NHW (Panel G) are more-or-less constant.
The excess in NHB versus NHW does appear highest in
younger age groups (Panel E).

Exploratory analysis: melanoma

As we will show in “Site differences of in situ mela-
noma” section, exploratory Comparative Analysis can
reveal structure that is difficult to discern using tradi-
tional approaches.

Methods

Cross-hazard rate ratios: four canonical proportionalities
Comparative Analysis seeks to identify proportional haz-
ards (PH) between strata along one time scale or another.
For the case G = 2, this problem was solved [34].

As illustrated in Fig. 3, when we compare two sets
of hazard rates ascertained over the same Lexis dia-
gram, each following an age-period-cohort model,
there are five possibilities. The expected CH-RRs can

be constant along diagonals (Panel A, “PH-L’, L for
longitudinal), constant across rows (Panel B, “PH-T”, T
for time), constant down the columns (Panel C, “PH-
X, X for cross-sectional age), or constant everywhere
(Panel D, “PH-A", A for absolute). Alternatively, if none
of the PH models hold, then the CH-RRs are free to
vary along diagonals, rows, and columns. When this
happens, we say the data are not PH (Panel E, “N-PH").
Furthermore, it turns out that if any two of the PH
models hold for a pair of hazards, then the third PH
model must also hold; this is why there are five pos-
sible PH models rather than eight.

These result for G =2 were worked out using the
algebra of the classic age-period-cohort model. Hap-
pily, using the algebra of the New Model, it is straight-
forward to generalize from G =2 to G > 2 and obtain
useful formulas. Hence, we can now identify for the
first time whether the scenarios shown in Fig. 3 hold
simultaneously for all pairs of hazard rates within a
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Fig. 2 Myeloma incidence. Lexis diagram heat maps for myeloma incidence among men by race/ethnicity. Non-Hispanic Whites (NHW, A),
Non-Hispanic Blacks (NHB, B); Hispanics (HIS, C), and Asians and Pacific Islanders (AP, D). Bubble plots show corresponding CH-RRs for NHB
versus NHW (E), HIS versus NHW (F), and APl versus NHW (G). See Online Supplement Part A and the legend to Fig. 1 for details
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larger ensemble of G > 2 stratum and quantify the
implications.

A fundamental theorem for comparative
age-period-cohort analysis

The New Model allows us to decompose age-
period-cohort fitted rates four equivalent ways [11].
Each EF-based decomposition of the hazard rates
2 (ax, pxrcx), € =1,...,G includes a baseline haz-
ard function, a main effect, and an interaction along
one of the three temporal directions of age a., period
p« or cohort ¢, = p, — a,. These decompositions can
be related to the canonical proportional hazards models
illustrated in Fig. 3. For a definition of each EF in terms
of the APC model parameters, please refer to Table 1 of
Rosenberg [11].

PH-L: Longitudinal in age
Given the decompositions:

79 (ay|cy) = LongAge® (ay) x CRR® (c,) x exp(ﬁ(g)(p* =cy + oz*)),g =1,...
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Ratios CRR® (c«) are not equal for any two or more stra-
tum, we say the rates are PH-L. When PH-L holds, CH-
RRs are determined by birth cohort effects:

FCPY(c,)

M (asles) RV
FCP® (¢,)

PH - L =
20 (axlcy) cH

(cs) =

In this expression, FCP®(c,) is an EF called the Fit-
ted Cohort Pattern that describes the expected rate at an
arbitrary reference age a.(a,) for each birth cohort in

stratum (g).
This expression works because
CRR® (¢,) = —FCPY(e) FCPO(e) __ That s,

Fcp®) (cx (Cref)) = LongAge(g) (ax (“ref))
the intercept terms in the Longitudinal Age Curves cancel
the reference values in the Cohort Rate Ratio curves, which
permits the CH-RRs values to range freely. This is crucial:
CH-RRs are not referent RRs, with one category arbitrarily
chosen as a baseline. Rather, they are floating RRs. For
example, in Fig. 1C, the CH-RRs never fall below 1.0.

,G

If the stratum-specific Longitudinal Age Curves
LongAge'® (a,) are proportional to each other, the period
deviations 7 (©) (p«) are all equal, but the Cohort Rate

PH-T: Cross-sectional in period
Given the decompositions:

29 (p,lay) = FTT® (p,) x CARR® (a,) x exp(Y @ (cx =ps —a:)),g=1,...,G
. . . a
Table 1 Comparative age-period-cohort analysis
Quantity PH-L PH-T PH-X PH-A
A Canonical Decompositions 19 p.|a.) = Any
@ efl,..,6} A9 (ale.) = FITO)(p.)XCARR® (@)% exp (79 (c. = p. — a.)) A9(.lp.) =
LongAge® (a,)XCRR (c.)x exp (19 (p. = c. +a.)) CrossAge® (a.)xPRR® (p.)x exp (7@ (c. = p. — a.))
19(c.la.) =
FCP®(c.)XLARR® (@) exp (7@ (. = c. + a.)
B Trend Parameters
((IZL +m), (ay — o), (my + n))@ (Equal, NOT Equal, NOT Equal) (NOT Equal, NOT Equal, Equal) (NOT Equal, Equal, NOT Equal) (Equal, Equal, Equal)
c Cohort Deviations 7 NOT Equal Equal Equal Equal
D Period Deviations 7(9) Equal Equal Not Equal Equal
E Age Deviations @) Equal Not Equal Equal Equal
F Model df° G+DA+P-1)-2 G+1DA+2(P-2) G+1DP+2(4-2) G+2(A+P)-5
G Longitudinal Parallel _NOT Parallel Linear Parallel
Age Curve(;;g IEingAgec 2D — log LongAge¥ (a,) - log LongAge® (a,) (uﬁ’)c = ,‘gjc) +{(m, + )P — (my + 7)) (u, - a,(ﬂve/)) uD —p®
log CrossAge¥)(a.) — log CrossAge™(a.)
H Cross-Sectional Age Curve Linear NOT Parallel Parallel Parallel
log C(;)ufs(z?c,;e‘ (kD — 1) + (@ - ) = (@, = y)®} (a. — a.(a)) log CrossAge(a.) —log CrossAge®(a,) W9 -, @ —p
log LongAge")(a.) — log LongAge® (a.)
1 Fitted Cohort Pattern log FCP © NOT Parallel Parallel Linear Parallel
j) log FCPY(c.) — log FCP™)(c.) 2D — 8 = P — @ (Ko = 95) + (s +1)® = (s +¥)®) (e = () PG
] Fitted Temporal Trends log FTT < Linear Parallel NOT Parallel Parallel
j) ¢ () (H%r = 1) = (@ = 1)@ = @ = )®} (p. = p.(07*")) 18— 1% = 1% — 1y log FTT® (p.) — 10g FTIT® (p.) uO - p®
K Local Drifts LD NOT Parallel 0 Parallel 0
(ORI Lp9P(a.) - LD®(a.) (m+y)P = +y)®
L Gradient Shifts GS NOT Parallel Parallel 4 0
(OB GSD(@.) - 65®@p.) (a, =y = (@, —y)®

@ Set-up for G > 2 stratum each defined on the same Lexis diagram with A age groups and P calendar periods

b Model df for N-PHis 2G(A + P — 2)

¢ Intercept terms for log-scale estimable functions are: ;) (k)

0. = log CrossAge™ (a, ) uige =

10gFTT® (p. (prer) i = 109 FCP®) (¢, (Crer)r 1 = log LongAge® (a, (arer))
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If the stratum-specific Fitted Temporal Trends
FTT® (p,) are proportional, the cohort deviations 7 c,)
are all equal, but the Cross-Sectional Age Rate Ratios
CARR® (a) are not equal for any two or more stratum,
we say the rates are PH-T. When PH-T holds, CH-RRs
are determined by age effects:

Page 6 of 13

Corollary 1

When PH-T holds,
LongAge(j) (ax) CrossAge(j) (as)
LongAge(k)(a*) - CrossAge(k)(a*)

For all pairs of strata (j) and (k). This holds because

LongAge(j) (ax) = exp( (ap + nL)(j) — (o — yL)(j) }(a* — E*)) CrossAge(j) (ay)
=exp| (mr + yL)(j) (ax — E*)) CrossAge(j) (ay)

CrossA, ge(j) (ay)

D (pila) _RR(;) ®)
CrossAge(k ) (ay)

PH-T
= 00 (palar)

( *) =
CrossA, ge(g ) (ax)

i @ — _ CrossAge®/(ay)
This works because CARR'®(a,) = Crossge® (a (arg)

_ CrossAge(g)(a*)
= FIT® (p. (prer))

Hence, the intercept terms in the Fitted Temporal
Trends cancel the reference values in the Cross-Sectional
Age Rate Ratio curves, which permits the CH-RRs values
to range freely.

PH-T: Cross-sectional in cohort
Given the decompositions:

Under PH-T, the Fitted Temporal Trends FTT(g)(p*)
are all proportional, which implies that the Net
Drifts, (7t + )/L)(g) are all equal. Hence

LongAge¥) ()
LongAge(k) (ax)

CrossAge(j) (a) _
CrossAge(k)(zz*) B

Furthermore, under PH-T, it follows that

FCPY (cy)
FCP® (¢,)

CFITD(py)
FIT® (p,)

)

for all values of ¢, and p.

29 (cylay) = FCP® (c,) x LARR® (a,) x exp(T® (o = ¢, + ax)),g = 1,...,G

If the stratum-specific Fitted Cohort Patterns
FCP®(c,) are proportional, the period deviations

29 (a,|py) = CrossAge'® (a.) x PRR® (p,) x exp(7® (cs

PH-X: Cross-sectional in age
Given the decompositions:

=P*—ﬂ*));g=1;---;G

7 (P« = cx + ay) are all equal, but the Longitudinal
Age Rate Ratios LARR® (a,) are not equal for any two or
more stratum, we also say the rates are PH-T. From these
expressions, CH-RRs are also determined by age effects:

” LongAge")
PH—T = Ak(c @) —RR(’) (k)( o= ong. gek(a*)
A0 (cyla) LongAge® (a.)
This works © because
(@) _ LongAge® (a,) _ LongAge'®) (a,)
LARR® (ax) = LongAge® (a, (cref)) FCP® (¢, (cref))”

Hence, the intercept terms in the Fitted Cohort Pat-
terns cancel the reference values in the Longitudinal Age
Rate Ratio curves, which permits the CH-RRs values to
range freely.

So now we have two different ways of getting PH-T.
Fortunately, the results are equivalent.

If the stratum-specific Cross-Sectional Age Curves
CrossAge® (p,) are proportional, the cohort deviations
y © (c4) are all equal, but the Period Rate Ratio curves
PRR® (p«) are not equal for any two or more stratum, we
say the rates are PH-X. When PH-X holds, CH-RRs are
determined by period effects:

20D FTTW
PH—X = Ak (ax|px) _RR (;) (k)(p* _ - (p+)
25 (ay|ps) FTT® (p,)
FTT® (p,)

This (v)vorks because PRR® (p,) = T (s (arg) =
FTT®) (p,
W(Z(‘W)),gz 1,...,G
Hence, the intercept terms in the Cross-Sectional Age
curves cancel the reference values in the Period Rate
Ratio curves, which permits the CH-RRs values to range
freely.
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PH-A: Absolute proportionality

It is easy to demonstrate that if any two models PH-L,
PH-T, or PH-X hold, then the third model must also hold.
When this happens, we say the data are “absolutely pro-
portional” (PH-A). Under PH-A the CH-RRs depend
only on the intercepts, PH — A = RR(C/L:“() - e(“m“‘(“),

N-PH: Not proportional

If none of the models PH-L, PH-T, or PH-X hold (which
implies that PH-A cannot hold), we say the data are “not
proportional” (N-PH). Under N-PH the CH-RRs vary
freely according to age, period, and cohort.

Corollary 2

The results described below are summarized in Table 1.
Online Supplement Part 2 discusses some computational
details.

Recall that an LD curve is obtained by sliding a window of
width P (number of calendar periods) through the cohort
deviations and extracting the least squares slope, and then
adding these “deflection” terms to the overall Net Drift.

It follows that the LD are not parallel under PH-L or
N-PH; identical under PH-T and PH-A; and parallel
under PH-X (Table 1, Row K). Furthermore, under PH-X,
the constant difference between LD curves for stratum (/)
versus (k) is determined by the corresponding difference
between the Net Drifts. Model-based LD curves are also
more precise.

PH-T is characterized by constant ratios between the
Fitted Temporal Trends (Table 1, Row J), and identi-
cal constant ratios between the Fitted Cohort Patterns
(Table 1, Row I). Model-based estimates for these EF are
also more precise than the corresponding unconstrained
estimates obtained under the N-PH model.

Conversely, under PH-L, the Longitudinal Age Curves are
all proportional (Table 1, Row G), but the cohort deviations
(Table 1, Row C) are heterogeneous. However, because the
period deviations are all equal (Table 1, Row D), differences
between the Fitted Temporal Trends (Table 1, Row J) vary
linearly and are estimated with increased precision.

Model selection

Each PH model can be evaluated for lack-of-fit via P-val-
ues. Even so, P-values dont always tell the whole story.
Information Theory provides a means to balance statisti-
cal significance with predictive utility; for this purpose, we
will use the Bias-Corrected Akaike Information Criterion
(AIC.), as recommend by Burnham and Anderson [37].

Hypothesis-based comparative analysis: results
Example 1: Sex differences in meningioma

Composite Tests for proportionality fail to reject PH-T,
but strongly reject PH-L, PH-X, and PH-A (Fig. 4A).
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Therefore, based on P-values, the rates are PH-T. Fur-
thermore, the AIC. is minimized for PH-T (Fig. 4B), and
no other model comes close.

Figure 4 panels C — H present EF curves based on the
PH-T model (females, solid blue; males, dashed red). The
female excess narrows with age (Fig. 4C and E). Incidence
is increasing in successive birth cohorts (Fig. 4D) but
slowing over time (Fig. 4F) at the same rate in women and
men. Incidence is increasing in every age group (Local
Drifts, Fig. 4G). The U-shaped pattern in the Local Drifts
reflects that the moderation that occurred among Baby
Boomers was not sustained in younger birth cohorts
(Fig. 4D). Increases over time in the younger cohorts may
reflect increases in clinical detection activities (e.g., brain
imaging) over time [38]. The Gradient Shifts are parallel
and stable (Fig. 4H).

Example 2: Race/ethnic differences in myeloma

The rates are PH-T based on P-values (Fig. 5A), but PH-A
has the lowest AIC, (Fig. 5B). Indeed, neither the PH-T
model nor any other model comes close. EF curves based
on the PH-A model are shown in Fig. 5 panels C — H.
Incidence by age is highest among NHB, lowest among
AP]I, and nearly identical among NHW and HIS (Fig. 5C
and E). Under PH-A, the LD curves do not differ by
race/ethnicity (Fig. 5G). The gradient shifts (Fig. 5H) are
equal with an inverted U-shape. Incidence over time is
increasing most rapidly in the youngest age groups with
the same annual percentage changes in each race/ethnic
group. Based on the PH-A model parameters, Myeloma
incidence is consistently 2.24-fold (95% Confidence
Interval [CI]: 2.2 — 2.3) higher in NHB versus NHW;
marginally lower (CH-RR=0.95, 95% CI: 0.91 — 0.99) in
HIS versus NHW, and 0.37-fold (95% CI: 0.33 — 0.40)
lower in API versus NHW (based on CH-RR values of
0.63 (95% CI: 0.60 — 0.66).

Pattern heterogeneity

Epidemiologists say that “patterns” are heterogeneous
when two or more parameters vary across stratum. This
is distinct from generic heterogeneity of a single param-
eter. There are many notable examples of pattern hetero-
geneity in the literature [39-44].

In the setting of a Comparative Analysis, we define Pat-
tern Heterogeneity as the occurrence of differences or
diversity in proportional relationships (as determined by
multiple parameters, Table 1) between subsets of strata.
We can identify Pattern Heterogeneity by modeling par-
titions of the strata and ranking the partitions by predic-
tive utility, as measured by the bias-corrected AIC for the
partition. We will call this process a Multiplex Analysis
because the algorithm can be parallelized.
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For example, suppose we have G =4 stratum
A, B, C, andD. A partition is a division of the strata into
non-overlapping subsets, e.g.,

AABH{CHD), . ..
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head and neck (H) and upper limb (U) are PH-L, whereas
trunk (T) and lower limb (L) are PH-X. No other parti-
tion fits as well. Fitted values for this partition are shown

AANBH{CH{D}

{ABCD},{A}{BCD}, {B}|I{ACD},...,{AB}|{CD},...
Call the set of non-empty subsets Sg = {1, [2,. .., [N}
and the corresponding set of partitions Pg = {p1,p», ..., ps}-

For G = 4, N = 15 and B = 15. The number of partitions
B is described by Bell's numbers [45], and efficient algo-
rithms are available to enumerate the partitions [46, 47].

Bell's numbers increase exponentially: The first 10 are
B=1, 2, 5, 15, 52, 203, 877, 4140, 21147, and 115975.

To determine the bias-corrected AIC value for each
partition py, b =1,2,...,B we need to keep track of its
constituent subsets in Sg and the order of occurrence
of those subsets. Record these values in a B x N corre-
spondence matrix Tg.

1. Run a Comparative Analysis on each subset in S; containing two or more stratum. Fit a
New Model to each singleton. This step can be parallelized.

2. Identify the optimal PH model for each subset based on the bias-corrected AIC. Record
its Poisson Deviance Devfn,n =1,...,N, and corresponding model degrees of freedom
df;;,n =1, ...,N. These values appear in Table 1. Treat singletons as N-PH.

3. Using correspondence matrix T, calculate the Poisson Deviance and model degrees of
freedom for the partition, Dev;b, b=1,..,Band df;b, b =1, ..., B: These values are
the sum of corresponding values for each constituent subset.

4. For each partition, calculate the bias-corrected degrees of freedom df,,,b = 1,2,..., B
using the information theory formula

df(dfit +1
df; = dfp+ + fﬁb( fl’b ) N
g » TAPG — dfy, — 1

b=12,..,B.
In this expression, A is the number of age groups, P is the number of calendar periods,
and G is the number of strata.

5. Calculate the bias-corrected AIC for each partition using the formula

AIC;, =Dev}, +2df;,b=12,..,B

#b

6. The best-fit partition is the minimizer over all partitions in P,

bope = argmin AIC;!
opt be{1g,2,.. B} e
Partitions with AP= (AICC‘M - AICE*%]”) < tol may also merit consideration. Values

of tol between 7 and 10 have a theoretical justification [37].

Algorithm 1. Multiplex analysis [37]

Exploratory comparative analysis: example

Site differences of in situ melanoma

Observed data are shown in Fig. 6A (left column). Results
of a Multiplex Analysis are summarized in Fig. 6B. The
best-fit partition which appears in the lower-left corner
of the plot in Panel B identifies pattern heterogeneity:

in Fig. 6A (right column). The fitted values are very simi-
lar to the observed values.

EF curves for this configuration are shown in Fig. 7. For
head and neck (HN) and upper limb (UL), the Longitudi-
nal Age Curves are parallel (Panel A), whereas the Cross-
Sectional Age Curves and Local Drifts are not (Panels B
and C, respectively). Indeed, whereas incidence of HN
is increasing at a qualitatively similar annual percentage
change over time in all age groups, with increasing age,
UL is increasing much more quickly than HN over time.
In contrast, for trunk (Tr) and lower limb (LL), the Cross-
Sectional Age Curves (Panel E) and the Local Drifts
(Panel F) are parallel, but the Longitudinal Age Curves
are not (Panel D). In every age group, Tr increased by
0.7 (95% CI: 0.30 — 1.15) percent per calendar year faster
than LL.

Discussion

In practice, comparative studies can be surprisingly hard.
This reflects the multivariate nature of the problem. Each
stratum-specific rate matrix spans four timescales, each
with informative EF, and there are four relevant cross-
hazard proportionalities. Our new methods automate
and streamline the identification of key similarities and
differences between stratum within a comprehensive
framework. In this regard, we believe the summary of
our results for hypothesis-based comparative studies in
Table 1 provides a helpful overview for the practitioner.

In brief, under PH-L the age-associated natural history
curves in each stratum are parallel, but the cohort and
period effects are not. In contrast, under PH-T, the natu-
ral histories are distinct, but the cohort and period effects
are parallel. Under PH-X, differences between strata are
modulated through the Net Drifts and period deviations.
Under PH-A, stratum-specific event rates differ only by
constants.

As illustrated by our examples, our approach can pro-
vide new insights. For meningioma, the female excess
narrows with age, but temporal patterns are strikingly
similar over time and across generations — a textbook
example of PH-T. For male myeloma, the disparity
among black men has long been recognized, but the
absolute proportionality of the rates across race/ethnic
groups has not. For melanoma in NHW females, our
exploratory approach identified proportional Longitu-
dinal Age Curves and distinct Local Drifts for HN and
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UL, versus distinct Longitudinal Age Curves and pro-
portional Local Drifts for Tr and LL. In our experience,
our examples are typical, not outliers. In ongoing stud-
ies of other cancers, proportionality — with and without
pattern heterogeneity — is a common occurrence. These
findings provide new clues for cancer researchers and
medical decision makers to follow.

In our view, the reasons for these successes are 1) our
method’s reliance on information theory, specifically, the
bias-corrected AIC statistic, to drive the model selection
process, 2) the New Model often provides an excellent
second-order approximation to the rates in each stra-
tum, and 3) the proportionality relationships that the
method is designed to detect, i.e., PH-L, PH-T, PH-X or
PH-A (Fig. 3), make the most sense from an epidemio-
logic perspective.

Our exploratory approach builds upon the foundation
provided by our hypothesis-based approach. Indeed,
within any given subset of a partition, if a PH model
holds (more or less, given the limitations discussed
below), it's a win—-win-win: It simplifies the story; it

identifies which EF drives cross-hazard heterogeneity; it
provides increased precision. In contrast, if the rates are
N-PH, then one can conclude that the rates are undeni-
ably heterogeneous. In that case, all the EF contribute to
the cross-hazard differences, and any description of the
data should make note of this fact.

Our approach has several limitations. The famous
aphorism “all models are wrong, but some are useful
[48]” describes our approach to a “T”. The New Model,
which provides the foundation for both hypothesis-
based and exploratory comparative analysis, can never be
entirely correct. Furthermore, it is naive to assume that
a PH model could flawlessly characterize relationships
between strata. Occasionally, more than one PH model
or partition may have similar bias-corrected AIC values.
When that happens, the fitted values are similar, but it
remains unclear which model or partition provides the
most robust insight. In this situation, one could employ
model averaging [37].

With these limitations in mind, Algorithm 1 for Mul-
tiplex Analysis can readily be performed for 2 < G < 8
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strata. Because the algorithm can be parallelized (see
Online Supplement Part 2), it appears feasible for slightly
larger values of G. Even so, the complexity of the analy-
sis increases exponentially with G, and for G = 12, the
number of partitions exceeds 4.2 million. At some point,
one must restrict the number of strata or evaluated par-
titions. As illustrated here, many important problems
involve fewer than 10 strata. Furthermore, adding more
strata isn’t necessarily better, because the bias correc-
tion term increases as the square of the number of added
parameters, which tends to make our methods less sen-
sitive as G increases.

Bayesian methods are attractive when G > 10 [49-51].
Bayesian analysis can estimate the distribution of EF
across an arbitrary number of strata assuming that the
parameters are realizations from an estimated posterior
distribution. This approach implies that the parameters
are broadly similar. In contrast, a Multiplex Analysis
of 2 < G < 10 strata in search of pattern heterogeneity

does not make the same assumption. Perhaps hybrid
multi-scale methods could be developed that marry the
strengths of each approach. In the context of a spatial
age-period-cohort analysis, regions could be partitioned
using Multiplex Analysis, and small areas within related
regions could be modeled using Bayesian methods.

Another complementary approach for small G prob-
lems is to smooth the Lexis diagrams up front using a
non-parametric approach, and then extract features of
interest from the de-noised data [6, 7, 33, 52—54]. For
example, estimates of age-specific period slopes from
the smoothed data can be compared to Local Drifts
from the Multiplex Analysis. Consistency between the
two approaches would bolster conclusions from the
model.

Comparative analysis using purely descriptive
approaches is time consuming and labor intensive.
Our new methods provide a comprehensive, coherent,
and reproducible method for small G problems. This
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covers many outstanding questions in cancer surveil-
lance research. Our essential R code, sample data, and
vignettes are freely available.

Conclusions

It is now possible to evaluate whether estimable functions
(EF) from stratified age-period-cohort models are essen-
tially equal, parallel, or distinct. These relationships reflect
the presence or absence of proportionality across the strata,
conditional on age, period, or birth cohort. Stratum-spe-
cific EF that incorporate proportionality are more precise.
Comparative Analysis can test a priori hypotheses, or it can
identify differences or diversity in proportional relation-
ships between subsets of strata (“pattern heterogeneity”).
These new methods can help researchers tackle many out-
standing questions in cancer surveillance research.
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