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Abstract 

Background  Stepped-wedge cluster randomized trials (SWCRTs) are a type of cluster-randomized trial in which clus-
ters are randomized to cross-over to the active intervention sequentially at regular intervals during the study period. 
For SWCRTs, sequential imbalances of cluster-level characteristics across the random sequence of clusters may lead 
to biased estimation. Our study aims to examine the effects of balancing cluster-level characteristics in SWCRTs.

Methods  To quantify the level of cluster-level imbalance, a novel imbalance index was developed based 
on the Spearman correlation and rank regression of the cluster-level characteristic with the cross-over timepoints. 
A simulation study was conducted to assess the impact of sequential cluster-level imbalances across different scenar-
ios varying the: number of sites (clusters), sample size, number of cross-over timepoints, site-level intra-cluster correla-
tion coefficient (ICC), and effect sizes. SWCRTs assumed either an immediate “constant” treatment effect, or a gradual 
“learning” treatment effect which increases over time after crossing over to the active intervention. Key performance 
metrics included the relative root mean square error (RRMSE) and relative mean bias.

Results  Fully-balanced designs almost always had the highest efficiency, as measured by the RRMSE, regardless 
of the number of sites, ICC, effect size, or sample sizes at each time for SWCRTs with learning effect. A consistent 
decreasing trend of efficiency was observed by increasing RRMSE as imbalance increased. For example, for a 12-site 
study with 20 participants per site/timepoint and ICC of 0.10, between the most balanced and least balanced designs, 
the RRMSE efficiency loss ranged from 52.5% to 191.9%. In addition, the RRMSE was decreased for larger sample 
sizes, larger number of sites, smaller ICC, and larger effect sizes. The impact of pre-balancing diminished when there 
was no learning effect.

Conclusion  The impact of pre-balancing on preventing efficiency loss was easily observed when there was a learn-
ing effect. This suggests benefit of pre-balancing with respect to impacting factors of treatment effects.
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Background
Stepped-wedge cluster randomized trials (SWCRTs) 
are a relatively novel type of cluster-randomized trials 
(CRTs) in which the active intervention is implemented 
at cluster level, e.g. hospitals, clinics, schools and etc., 
with participants nested within each cluster [1]. All clus-
ters start with the control intervention, and then clusters 
are randomized to cross-over to the active  intervention 
sequentially at regular intervals during the study period 
(Fig.  1). SWCRTs have been implemented in a wide 
number of research areas, including: human immunode-
ficiency virus (HIV), cancer, healthcare associated infec-
tions, social policy, and criminal justice. This design can 
be appealing to test interventions that can only be deliv-
ered at a cluster level. Further, SWCRTs may be attrac-
tive to participating sites and implementing groups as all 
study sites will cross-over to the active intervention [1]. 
SWCRTs also increase power relative to a traditional par-
allel CRTs in situations where a high intra-cluster corre-
lation is anticipated [1].

For randomized trials, imbalances in baseline charac-
teristics between treatment arms may occur [2, 3]. For 
trials randomized at the participant level, a number of 
strategies to reduce the chance of covariate imbalance 
have been proposed, including: stratified randomization 
[4], minimization [5], covariate-adaptive randomization 
[6], minimal sufficient balance randomization [7]. Analyt-
ical strategies to account for covariate imbalance include: 
adjusting for pre-specified confounders. For cluster 
randomized trials, given the usually small number of 
clusters, there is an increased chance of covariate imbal-
ance between clusters randomized to the treatment and 
control interventions [8]. Stratification, minimization, 
“best balance” allocation [9], and covariate-constrained 
randomization [10] can similarly reduce the chance for 

covariate imbalance in CRTs. Direct adjustment of covar-
iates in linear mixed models can reduce estimation bias 
and prevent power loss compared to unadjusted models 
[11].

For SWCRTs, sequential imbalances across the random 
sequence of clusters may be an issue; e.g. cluster-level 
characteristics systematically differed between clusters 
randomized early to crossover to the intervention treat-
ment versus clusters randomized later in the trial. For 
example, consider a 6-site SWCRT where clinicians at 
each site have differing average years of experience that 
can be categorized to low [L], moderate [M], or high [H]. 
If randomization was left to chance, the sequence of sites 
may be {L, L, M, M, H, H}. Thus, this introduces a lin-
ear/sequential imbalance across the 6 sites with sites with 
high levels of training being under-represented in the 
study due to later entrance. While this is a hypothetical 
extreme case of low probability, other sequences of less 
severe sequential imbalance may occur more frequently, 
especially given that SWCRTs usually randomize a small 
number of clusters [12]. In addition, site-level covariates 
may be imbalanced in a non-linear (e.g. quadratic) or 
cyclical (e.g. seasonal) manner.

As a motivating example, the Canadian Institutes of 
Health Research (CIHR) funded project grant, titled Effec-
tiveness of an Integrated Care Pathway for Adolescent 
Depression: a Multi-site Stepped-Wedge, Cluster-Rand-
omized Controlled Trial (CARIBOU-2), aims to imple-
ment a complex intervention with six sites sequentially 
using the SWCRTs design [13]. The CARIBOU-2 study 
aims to test the effectiveness and implementation of an 
Integrated Care Pathway (ICP) (i.e., a multidisciplinary 
treatment algorithm) for the treatment of depression in 
adolescents based on the highest quality practice guide-
lines. The ICP is intended to facilitate the delivery of 
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Fig. 1  A hypothetical SWCRT with 6 clusters and 7 time points
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coordinated evidence-based treatments at the clinic level. 
Depression is the leading cause of disability in adolescents 
and a potent risk factor for adolescent suicide. Evidence-
based treatments are available; however many clinics do 
not provide guidelines-based treatments. Whether or not 
the ICP actually leads to improved outcomes for depres-
sion in adolescents is still unknown and testing this 
approach is a complex undertaking. This project aims to 
use an SWCRT design where adolescents with depression 
are allocated to the ICP versus treatment-as-usual (TAU) 
in community settings. Participants will consist of adoles-
cents (age 13 to 18) with depressive symptoms presenting 
to one of six community mental health agencies across 
the province of Ontario, which will be admitted in the 
stepped-wedge design in seven timepoints. The primary 
outcome is change in depressive symptoms from baseline 
to the 6-month time point. Potential site-level factors that 
may impact treatment outcome include rurality, income-
level of the neighborhood communities, and average years 
of experience of the clinicians. Given the age group of the 
participants, both linear and seasonal site-level imbal-
ances may be observed.

Stratification and covariate-constrained randomiza-
tion can help reduce the effects of covariate imbalance in 
SWCRTs [14]. Lew et  al. (2019) [15] proposed a metric 
to quantify sequential site-level imbalances. Sequential 
balancing of covariates was achieved by calculating the 
imbalance metric for site-level characteristics for all pos-
sible site assignments and selecting the randomization 
sequence that minimized the imbalance metric. There 
lacks a unified approach to quantify different, multiple 
types of imbalances, including linear, non-linear, and 
cyclical imbalances. Analysis of SWCRTs typically use 
linear mixed effects models to estimate treatment effects 
[16]; analysis using generalized estimating equations or 
non-parametric methods have also been proposed [17]. 
Prior studies have examined the impact of unequal clus-
ter sizes on sample size and power [18] in SWCRTs [19, 
20]. However, the field still lacks research studies that 
quantifies the association between magnitude of imbal-
ance and potential bias and efficiency in assessing impact 
of the active intervention.

In this study, we examine the impact on estimation bias 
and efficiency of not prospectively balancing as a func-
tion of magnitude of imbalance, as well as design fea-
tures as covariates. In particular, we focus on a model 
that incorporates a cumulative treatment effect over time 
[16]. This can be observed when the training of the inter-
ventionist is required and thus the treatment effect may 
increase over time, starting from the time of cross-over 
to the active treatment until saturation. This is referred 
to as the “learning effect” in the paper in contrast to a 
constant (or immediate) treatment effect. We further 

assumed that the treatment effect did not depend on the 
time it was initiated [1, 21]. We also introduce a stand-
ardized definition of imbalance index and propose meth-
ods of  incorporating multiple imbalance metrics  and 
multiple site-level factors. We conducted a simulation 
study to demonstrate the benefit of balancing site-level 
factors across a wide spectrum of scenarios by varying 
the: number of sites, sample size per site, number of steps 
of the design, and effect sizes.

Methods
This paper introduces methods to balance SWCRTs 
at the randomization stage in order to cope with lin-
ear, non-linear and seasonal effects in terms of time of 
transition from control/waiting to active intervention 
condition. We examine the impact of not proactively bal-
ancing, methods of balancing including incorporating 
multiple temporal factors and multiple site-level factors. 
A simulation study focused on balancing linear impact 
has been conducted to demonstrate the benefit of balanc-
ing in a wide spectrum of scenarios taking into account 
factors of number of sites, sample size at each site, num-
ber of steps of the design, and perceived magnitude of 
effect sizes. Extensive sensitivity analyses examined alter-
native models which include the random effect on the 
treatment effect at the site level, and at the site by time 
level. The balancing based randomization will also be 
demonstrated on the motivating study.

Linear, non‑linear and seasonal site‑level imbalances
We discuss three types of effects that may impact the 
evaluation of the treatment efficacy: (1) linear/sequen-
tial, (2) non-linear, and (3) seasonal imbalance across 
site-level characteristics. For example in the CARIBOU-2 
study, the rurality varies across the six sites and each site 
can be classified as urban, suburban, or rural, and subse-
quently coded as 0, 1, and 2 depending on level of rurality. 
Without considering the balance of site-level characteris-
tics, randomization may generate the following sequence 
of six sites with linear/sequential imbalance: {0, 0, 1, 1, 
2, 2}. Intuitively, sites with high rurality will be severely 
under-represented in the novel ICP intervention condi-
tion due to later entrance.

To quantify the linear or sequential imbalance, we 
define imblancedness index, iL as the absolute value of 
the Spearman’s correlation coefficient between quantified 
site characteristics and time, {t, t = 1, 2, ..,T } . It ranges 
from 0 (perfectly balanced) to 1 (perfectly imbalanced). 
Equivalently, it can also be defined as the square root of 
the coefficient of determination, commonly known as 
the R-squared, of the regression of which the ranked site 
characteristics is regressed on the sequential time 
indices.
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The same approach can be extended to evaluate imbal-
ance for specific non-linear patterns. For example, we 
define the quadratic imbalance index, iQ , as the abso-
lute value of the partial Spearman correlation coefficient 
between the quantified site characteristics and squared 
time, {t2, t = 1, 2, ..,T } , with linear time being controlled. 
It ranges from 0 (perfectly balanced) to 1 (perfectly 
imbalanced) as well. Or in regression terms, this is the 
square root of the partial coefficient of determination of 
the regression of which the ranked site characteristics is 
regressed on the quadratic time with the sequential time 
controlled in the model.

Similarly, we define the seasonal imbalance index, is , as 
the square root of the coefficient of partial determination 
when the ranked site characteristics is regressed on sea-
sonal indicators with sequential time trend and/or other 
time trend, e.g. quadratic, controlled.

Figure  2 shows four hypothetical randomization 
sequences with varying degrees of linear, quadratic and 

seasonal imbalance assuming a SWCRT with 12 sites 
and one ordinal site-level characteristic with three lev-
els, denoted as 0, 1 and 2. The y-axis represents the level 
of the site characteristic and x-axis represents the time 
of each site crossing over from control to active treat-
ment. Every four steps constitutes a full yearly cycle for 
seasonal effects. The first sequence (Fig.  2A) is linearly 
imbalanced (iL = 0.917) with minimal quadratic and sea-
sonal imbalance. The subsequent sequences show quad-
ratic imbalance (Fig.  2B), seasonal imbalance (Fig.  2C), 
and fully balanced (Fig.  2D) randomization sequences. 
For example, as Fig. 2C demonstrated that sites of Level 
0 all appeared earlier in the seasons, Level 1 sites, more 
in the midseason, and Level 2 sites, near the end of the 
seasons. This showed a strong cyclic or seasonal trend 
( iS = 0.946 ) and it may impact the estimation when there 
is an interaction between seasons and treatment effect.

When there are multiple site characteristics and/or 
multiple linear or non-linear trends to be balanced, we 

Fig. 2  Example diagrams of imbalance at linear, quadratic, and seasonal levels
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define the overall imbalance index, io, as a weighted aver-
age of individual imbalance indices, ik, as defined in the 
previous section:

The weights, wk , k = 1, 2, . . .  , should be determined 
by the content experts of the trial.

Strategy of balancing
To ensure balance of site-level characteristics in the 
SWCRT, we recommend the following strategy to mini-
mize the overall imbalance of the design.

Step 1: Determine the site characteristics to balance
These are the moderators of the treatment effects at the 
site level. The knowledge could be obtained from lit-
erature review, pilot data, or a panel of content experts 
in the field. Examples include: size of the clinics/sites, 
income levels of the communities of the study sample, 
rurality (rural, suburban, urban, or mixer of any of the 
above), and others. If multiple site-level characteristics 
are selected, it is recommended to check for multi-col-
linearity by calculating the pairwise correlation between 
characteristics.

Step 2: Determine the time trend(s) to balance
Most commonly, it is sufficient to only balance the linear 
trend. The quadratic trend may be needed if non-linear 
associations between the site-level characteristic and the 
treatment effect are expected. The seasonal trend may be 
of interest, for example, when the population consists of 
school aged children or youth as their performance may 
be impacted by school semesters and yearlong schedule 
[22].

Step 3: If multiple indices need to balanced, determine 
the weight of each index
The weights can be determined by a panel of experts. 
One approach is to use a pre-determined ranking system 
or rating system that evaluates the importance of the type 
of trend and site characteristics, especially when directly 
determining numerical weights is difficult. The ranks or 
ratings then can be converted to weights [23, 24]. For 
example, if there are K indices to be balanced and they 
are ranked from the most important ( r = 1) to the least 
important ( r = K ), an index or rank r can be assigned 
with a weight of (K − r + 1)p, of which the exponent p 
is a parameter to control the distribution of the weights. 
Please also note while all the indices have the same range 
of 0 to 1, the performance of their combination can be 
complicated and may require intricate statistical knowl-
edge as well as domain knowledge.

(1)io = �wkik , where �wk = 1

Step 4: Calculate the overall imbalance across randomization 
sequences and randomly select a sequence that minimizes 
imbalance
For a small number of study sites, exhaustive enumera-
tion of all randomization sequences may be feasible. 
For a larger number of sites, a large but not exhaus-
tive set of randomization sequences can be randomly 
generated. Calculate the overall imbalance for each 
sequence and randomly select a sequence that mini-
mizes imbalance.

Overly covariate-constrained randomizations could 
jeopardize the impartiality of the study design [25]. 
For example, to achieve the minimum of the imbalance 
index, some sites may have to be assigned in a spe-
cific sequence. We may need to relax the minimization 
requirement if only a few design options are available 
for selection.

Distribution of imbalance index
To assess the distribution of imbalance index, we exhaus-
tively enumerated all permutations of the 6-site and 
12-site settings and computed the linear imbalance index 
of these designs. We assume the cluster-level character-
istics have three ordinal levels noted by 0, 1 and 2 with 
2 or 4 sites at each level. There are 90 and 34,650 unique 
designs in terms of the sequential distribution of the site 
characteristics for 6-site and 12-site settings, respectively. 
Descriptive statistics were used to summarize the distri-
bution of imbalance indices for the two settings.

Simulation study design
We performed a simulation study to evaluate how 
sequential\linear imbalance may impact the precision of 
estimating the treatment effect in stepped-wedge cluster 
randomized trials. The primary and secondary evaluation 
criteria are the relative root mean square error (RRMSE) 
and relative mean bias of the estimate, respectively. They 
are used to compare the population average effects, 
preset by the simulation model, and the sample aver-
age treatment effect, obtained by simulated data sets, in 
terms of efficiency and unbiasedness, respectively.

Each simulated trial assumed i = 1, . . . , I clusters, 
t = 1, . . . ,T  timepoints, and j = 1, . . . , J  participants per 
cluster per time point. The SWCRT assumed a cross-
sectional, rather than a longitudinal design, to mirror the 
design of the CARIBOU study. The total sample size was 
N = I × J × T  . The continuous outcome for the jth par-
ticipant in cluster i at time t, was denoted as Yijt . The clus-
ter-level characteristics for the ith cluster were denoted as 
Zi . The treatment indicator for the ith cluster at time t was 
Groupi,t with Groupi,t = 1 for the active intervention and 
Groupi,t = 0 for the control intervention.
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The SWCRT design assumed either: (1) a constant 
treatment effect; or (2) an increasing treatment effect 
over time (e.g. a learning effect).

The primary SWCRT model with constant treatment 
effect is given by Eq. (2):

The treatment effect β1 remains constant across all 
timepoints after the ith cluster crosses-over to the active 
intervention at time Ti. However, the treatment effect 
varies between clusters depending on the cluster-level 
characteristics Zi. The random error is ǫijt ∼ N (0, σ 2) . 
The clustering effect is denoted by the random effect 
b0i , which follows N (0, σ 2

re) and is independent of ǫijt . 
Also included in the model is a time effect denoted by 
β2 ∗ τ , of which τ represents a categorical time indica-
tor with T + 1 levels. For all the simulations, we have 
set β2 = 0 but included the term in the estimation 
model to better reflect the practice of SWCRT in the 
field.

The primary SWCRT model with a linear learning 
effect is given by Eq. (3):

The function fi(t) specifies the learning effect of clus-
ter i at time t. The effect size increases by increments of 
β1 at each successive time point after the ith cluster has 
crossed-over to the active intervention at time Ti. Thus, 
the overall treatment effect is β1 ∗ fi(t) . For example, the 
first cluster to cross over will have effective effect sizes of 
β1/(T − 1) and β1 at time t = 2 and t = T  , respectively, 
with increment of β1/(T − 1) at each step after crossover 
and only the first site achieved the full effect size at the 
final step.

As a sensitivity analysis, we examined two variations 
to the primary SWCRT models. Assuming constant 
treatment effects, the first variation which includes an 

(2)Yijt = β0+b0i + β1 ∗ Zi ∗ Groupi,t+β2 ∗ τ + ǫijt

where Groupi,t =

{
0, t < Ti

1, t ≥ Ti
and

Ti = Time where ithcluster is assigned to active intervention

(3)Yijt = β0+b0i + β1 ∗ fi(t) ∗ Zi ∗ Groupi,t+β2 ∗ τ + ǫijt

where Groupi,t =

{
0, t < Ti

1, t ≥ Ti
,

fi(t) =

{
0, t < Ti

(t − Ti + 1)/(T − 1), t ≥ Ti
and

Ti = Time where ith cluster is assigned to active intervention

additional random effect at the cluster level, b1i , to the 
treatment coefficient β1 is given by Eq. (4).

Assuming constant treatment effects, the second vari-
ation is augmented by an additional random effect at the 
cluster by time level, denoted by b0i,t [Eq. (5)].

These variations have also been similarly applied to the 
simulations for the learning effects models.

Simulation parameters
Simulations were performed using R version 4.1.3. Trials 
assumed I = 6 clusters and T = 7 steps, or I = 12 clus-
ters and T = 13 steps. Trials had J = 10 or 20 partici-
pants per cluster at each step. The I + 1 steps allows all 
clusters to begin on the control intervention at t = 1.

For the primary models with constant effect, the treat-
ment effect was β1 = 0.2, 0.5, or 1.0 for all trials. For the 
model with a learning effect, the incremental effect sizes 
were determined as β1/(T − 1) . Thus, the incremental 
effect sizes were 0.033, 0.083, or 0.0167 for the 6-site 
designs, and 0.017, 0.042, and 0.083 for the 12-site 
designs. These incremental effect sizes achieved the same 
full effect size ( β1 = 0.2, 0.5, or 1.0) at the final step for the 
first site to crossover. Throughout the simulation, the 
standard deviation of the random error, σ , was assumed 
to be 1. The clustering effects was controlled by the ICC, 
σ 2
re

σ 2
re+σ 2 . Two levels of ICC for the control condition, 0.01 

and 0.10, were used in the simulation.
The cluster-level characteristics were ordinal with 

three levels (e.g. 0 = small, 1 = medium, 2 = large) with 
even number of sites distributed on each level. Site level 
characteristics were coded as  Z = {0, 0, 1, 1, 2, 2} or 
Z = {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2} for trials with 6 or 12 
clusters, respectively. To demonstrate the impact of dif-
ferent level of imbalance, we selected sequences of Z that 
have imbalance indices at 0th, 33th, 66th, 83th, and 100th 
percentiles of all permuted sequences (90 for 6 sites and 
34,650 for 12 sites). For.

In total, we have examined 240 scenarios varying six 
parameters: number of sites (6 and 12), sample size per 
step/site (10 and 20), type of learning effects (constant 
and increasing/learning), effect sizes (0.2, 0.5, and 1.0), 
ICC (0.01 and 0.10), and level of imbalance (0th, 33th, 66th, 
83th, and 100th percentiles of the permuted distribution). 
Each scenario has been simulated 10,000 times. As a sen-
sitivity analysis, specific scenarios were simulated 50,000 
times to confirm the reliability of estimates. Linear 
mixed-effects modeling accounting for site-level cluster-
ing using site-level random intercept and random effect 

(4)Yijt = β0+b0i + (β1 + b1i) ∗ Zi ∗ Groupi,t+β2 ∗ τ + ǫijt

(5)Yijt = β0+b0i + b0i,t + β1 ∗ Zi ∗ Groupi,t+β2 ∗ τ + ǫijt
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for β1 were used to estimate the sample average treat-
ment effects. For example, for the scenario with constant 
treatment effect, the estimates were obtained by the fol-
lowing model,

While Eq.  (6) differs from Eq.  (2), it does not require 
the knowledge of clustering level characteristics (or 
potential misclassification) but still obtains an unbiased 
estimate of β1 by incorporating the random effect bi1.

All the aforementioned simulations metrics have also 
been applied the secondary models. For Model (4), the 
standard deviation of bi1 was set to be 10% of the corre-
sponding β1 value. For Model (5), the standard deviation 
of b0i,t was fixed at 0.10. For this model, the fitted model 
also included a cluster by time random effect.

Simulation metrics
Relative root mean square error (RRMSE) and relative 
mean bias using the following formulae were employed 
to evaluate the performance of different designs by com-
paring estimated sample average treatment effects with 
the true treatment effects specified by the simulation 
design ( β1).

Relative root mean square error (RRMSE)

Relative mean bias

where β̂1,k is the estimate from the k-th simulation (k = 1, 
…, K = 10,000).

Results
Distribution of imbalance index in 6‑ and 12‑site SWCRTs
Using exhaustive enumeration, we assessed the distri-
bution of imbalance indices for 6- and 12-site SWCRTs 
(Table 1). For the 6-site SWCRTs, the median imbalance 
index was 0.359 (range 0 to 0.956). The first and second 
tertiles were 0.239 and 0.478, respectively. One sixth of 
the designs have an imbalance index of 0.717 or higher. 

(6)
Yijt = β0+b0i + (β1 + bi1) ∗ Groupi,t+β2 ∗ τ + ǫijt

RRMSE
(
β̂1

)
=

√
1

K

∑K

k=1
(β̂1,k − β1)

2
/β1

Bias
(
β̂1

)
=

1

K

∣∣∣∣
∑K

k=1

(
β̂1,k − β1

)∣∣∣∣/β1

For the 12-site design, the median imbalance index was 
0.207 (range 0 to 0.946). The first and second tertiles were 
0.148 and 0.296 respectively. One sixth of the designs 
have an imbalance score of 0.414 or higher. With a larger 
number of sites, the mean of the distribution of the 
imbalance index shifts towards zero.

Simulation results for SWCRT with learning effect
The impact of pre-balancing can be easily observed 
when there is a hypothesized learning effect: it is easy 
to conclude that pre-balanced design will always have 
the highest efficiency (measured by RRMSE) regard-
less of the ICC, the number of sites or sample size at 
each site/time. At ICC = 0.01, for SWCRTs with 6 sites 
and 10 participants recruited at each step and each site, 
we saw a consistent decreasing trend of efficiency, i.e. 
increasing RRMSE’s as imbalance increased (Table  2). 
For example, for an overall effect size of 0.5, the RRMSE 
decreased from 1.225 for fully imbalanced (100th per-
centile) designs to 0.738 for fully balanced designs (0th 
percentile). This represents a maximal efficiency loss of 
66.0% (e.g. [1.225–0.738]/0.738). Even switching from 
a fully-balanced design to a partially imbalanced design 
(33rd percentile) will have an efficiency loss of 61.6% (e.g. 
[1.225–0.758]/0.758). This trend repeats at ICC = 0.10.

As expected, as the ICC increases, the RRMSE 
increases in general. For example, the RRMSE for a 
partially imbalanced design (33rd percentile) and effect 
size of 0.5 increases from 0.758 to 0.968 when the ICC 
increases from 0.01 to 0.10. These findings replicated 
for the designs at both ICC levels with 6 sites and 20 
individual recruited at each stage/site with the same 
steady decreasing trend of efficiency over the increas-
ing imbalance indices. Switching from the fully balanced 
design to the fully imbalanced design showed a maximal 
loss in efficiency ranging from 16.5% (effect size = 0.2, 
ICC = 0.10) to 116.2% (effect size = 1.0, ICC = 0.01).

Further, for the designs with 12 sites, the efficiency 
losses were even more substantial. Between the most 
balanced and least balanced designs, the efficiency loss 
ranged from 52.3% to 230.0% (10 individuals per site, 
ICC = 0.01), 10.2% to 115.7% (10 individuals per site, 
ICC = 0.10), 73.3% to 211.2% (20 individuals per site, 
ICC = 0.01), and from 52.5% to 191.9% (20 individuals per 
site, ICC = 0.10). Also worth noting is that for the models 

Table 1  Distribution of imbalance indices in 6- and 12-site SWCRTs

Xth Percentile

# Sites # Timepoints # Unique designs 0th 16.7th 33rd 50th 67th 83rd 100th

6 7 90 0 0.119 0.239 0.359 0.478 0.717 0.956

12 13 34,650 0 0.059 0.148 0.207 0.296 0.414 0.946
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Table 2  Relative Root Mean Square Error (RRMSE) of the estimated treatment effects

a The ICC for the treatment condition for the 6-site SWCRTs were 0.040, 0.174, and 0.448 for the three effect sizes, 0.20, 0.50, and 1.00, respectively. The ICC for the 
treatment condition in the 12-site SWCRTs were 0.038, 0.161, and 0.424 for the three effect sizes respectively
b The ICC for the treatment conditions for the 6-site SWCRT were 0.125, 0.237, and 0.477 for the three effect sizes respectively. The ICC for the treatment conditions for 
the 12-site SWCRTs were 0.122, 0.226, and 0.456 for the three effect sizes respectively

ICC Number of 
sites

Sample size at 
each step

Imbalance index Percentiles With learning effect With constant effect

Effect size Effect size

0.2 0.5 1.0 0.2 0.5 1.0

0.01a 6 10 0.000 0th 1.646 0.738 0.444 0.747 0.304 0.158

0.239 33rd 1.653 0.758 0.472 0.748 0.314 0.159

0.478 67th 1.733 0.848 0.540 0.782 0.327 0.163

0.717 83rd 1.824 1.015 0.699 0.799 0.341 0.167

0.956 100th 1.951 1.225 0.964 0.851 0.373 0.18

20 0.000 0th 1.295 0.610 0.376 0.557 0.227 0.115

0.239 33rd 1.322 0.632 0.396 0.56 0.229 0.114

0.478 67th 1.383 0.717 0.453 0.568 0.236 0.117

0.717 83rd 1.515 0.870 0.569 0.589 0.242 0.121

0.956 100th 1.630 1.121 0.813 0.627 0.253 0.123

12 10 0.000 0th 0.896 0.409 0.253 0.389 0.161 0.082

0.148 33rd 0.902 0.430 0.264 0.395 0.162 0.083

0.296 67th 0.956 0.488 0.310 0.396 0.164 0.083

0.414 83rd 0.993 0.542 0.361 0.414 0.168 0.085

0.946 100th 1.365 1.060 0.835 0.491 0.197 0.094

20 0.000 0th 0.711 0.336 0.215 0.291 0.118 0.060

0.148 33rd 0.721 0.348 0.227 0.292 0.119 0.060

0.296 67th 0.780 0.399 0.262 0.297 0.120 0.060

0.414 83rd 0.812 0.452 0.298 0.296 0.120 0.061

0.946 100th 1.232 0.968 0.669 0.339 0.131 0.064

0.10b 6 10 0.000 0th 2.238 0.955 0.548 0.855 0.341 0.173

0.239 33rd 2.223 0.968 0.569 0.849 0.348 0.173

0.478 67th 2.314 1.042 0.632 0.860 0.351 0.173

0.717 83rd 2.349 1.169 0.775 0.849 0.349 0.173

0.956 100th 2.453 1.324 0.997 0.859 0.356 0.179

20 0.000 0th 1.656 0.752 0.437 0.614 0.249 0.124

0.239 33rd 1.706 0.768 0.460 0.615 0.249 0.124

0.478 67th 1.736 0.819 0.513 0.610 0.249 0.124

0.717 83rd 1.823 0.964 0.621 0.606 0.248 0.126

0.956 100th 1.930 1.159 0.841 0.614 0.248 0.123

12 10 0.000 0th 1.134 0.497 0.292 0.440 0.178 0.089

0.148 33rd 1.145 0.515 0.300 0.443 0.178 0.089

0.296 67th 1.188 0.562 0.346 0.437 0.178 0.089

0.414 83rd 1.209 0.610 0.395 0.449 0.178 0.090

0.946 100th 1.505 1.072 0.852 0.440 0.183 0.093

20 0.000 0th 0.840 0.381 0.233 0.318 0.127 0.064

0.148 33rd 0.845 0.392 0.245 0.318 0.128 0.064

0.296 67th 0.892 0.436 0.280 0.318 0.128 0.064

0.414 83rd 0.926 0.490 0.316 0.317 0.127 0.064

0.946 100th 1.281 0.974 0.680 0.313 0.127 0.064
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not controlling for site level variation, it generates the 
smallest RRMSE across the board. In other words, if the 
site level characteristics were perfectly balanced, there is 
no need to control for site difference. In addition to the 
virtually monotonic relationship between efficiency and 

imbalance index, we have also observed that the RRMSE 
decreases in general for larger sample size, larger number 
of sites, smaller ICC and larger effect sizes.

In terms of unbiasedness, all designs performed well 
(Table 3).

Table 3  Relative mean bias of the estimated treatment effects

ICC Number of 
sites

Sample size at 
each step

Imbalance index Percentiles With learning effect With constant effect

Effect size Effect size

0.2 0.5 1.0 0.2 0.5 1.0

0.01 6 10 0.000 0th 0.016 0.007 0.004 0.005 0.003 0.001

0.239 33rd 0.011 0.004 0.001 0.004 0.001 0.001

0.478 67th 0.013 0.003 0.005 0.001 0.001 0.001

0.717 83rd 0.013 0.005 0.004 0.001 0.001 0.001

0.956 100th 0.015 0.007 0.000 0.011 0.005 0.001

20 0.000 0th 0.004 0.000 0.005 0.000 0.003 0.001

0.239 33rd 0.001 0.004 0.002 0.002 0.003 0.000

0.478 67th 0.001 0.006 0.009 0.000 0.002 0.002

0.717 83rd 0.011 0.009 0.009 0.005 0.001 0.002

0.956 100th 0.007 0.008 0.002 0.006 0.002 0.000

12 10 0.000 0th 0.007 0.002 0.001 0.002 0.002 0.000

0.148 33rd 0.001 0.000 0.001 0.003 0.000 0.001

0.296 67th 0.006 0.008 0.003 0.001 0.001 0.001

0.414 83rd 0.012 0.015 0.004 0.004 0.001 0.001

0.946 100th 0.002 0.005 0.004 0.004 0.001 0.000

20 0.000 0th 0.005 0.003 0.002 0.002 0.001 0.001

0.148 33rd 0.011 0.002 0.002 0.001 0.002 0.001

0.296 67th 0.001 0.003 0.002 0.000 0.001 0.000

0.414 83rd 0.012 0.000 0.002 0.002 0.002 0.001

0.946 100th 0.018 0.006 0.002 0.006 0.001 0.000

0.10 6 10 0.000 0th 0.010 0.010 0.001 0.007 0.003 0.000

0.239 33rd 0.012 0.001 0.001 0.008 0.000 0.002

0.478 67th 0.039 0.003 0.006 0.009 0.001 0.001

0.717 83rd 0.019 0.007 0.001 0.004 0.002 0.001

0.956 100th 0.035 0.012 0.001 0.016 0.005 0.001

20 0.000 0th 0.017 0.006 0.002 0.002 0.004 0.001

0.239 33rd 0.008 0.003 0.004 0.004 0.002 0.000

0.478 67th 0.002 0.008 0.010 0.002 0.002 0.002

0.717 83rd 0.003 0.001 0.012 0.007 0.002 0.002

0.956 100th 0.007 0.003 0.003 0.007 0.001 0.000

12 10 0.000 0th 0.010 0.007 0.002 0.003 0.002 0.000

0.148 33rd 0.000 0.004 0.001 0.004 0.000 0.001

0.296 67th 0.005 0.011 0.003 0.001 0.001 0.001

0.414 83rd 0.008 0.014 0.001 0.001 0.002 0.001

0.946 100th 0.002 0.007 0.005 0.004 0.001 0.000

20 0.000 0th 0.006 0.004 0.001 0.002 0.001 0.001

0.148 33rd 0.016 0.002 0.002 0.001 0.001 0.001

0.296 67th 0.000 0.005 0.002 0.002 0.001 0.001

0.414 83rd 0.012 0.001 0.001 0.002 0.002 0.001

0.946 100th 0.016 0.005 0.002 0.005 0.001 0.000
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Simulation results for SWCRT with constant effect
The impact of pre-balancing diminishes when there is 
no learning effect, i.e., the treatment effect maximizes as 
soon as a site is transferred from waitlist to active treat-
ment (Table  2). While there were some subtle trend in 
the estimates, nothing really has stood out if we take 
into account of the margin of error dictated by the num-
ber of replications. In terms of unbiasedness, all designs 
performed well with low mean bias overall (Table 3). In 
Tables  2, we also reported the ICC for the intervention 
conditions in the footnote. Given the hypothesized vary-
ing response to the treatment due to difference in the site 
characteristics, the ICC for the treatment sites is highly 
dependent on the treatment effect size. This differs from 
the conventional assumption that the varying response to 
the treatment is caused by a random effect of fixed size 
thus not a function of the treatment effect size.

For the secondary simulation models (4) and (5) for 
both constant and learning treatment effects, we have 
obtained very similar results. The detailed results are pre-
sented in Supplementary Tables 1-4.

Demonstrated application of the balancing procedure
We applied our 4-step strategy to balance site-level char-
acteristics to the CARIBOU-2 study which tests the effec-
tiveness of an ICP using the SWCRT with six sites as a 
demonstration. Step 1. We identified two potential site-
level effect moderators, rurality and community income 
level. For rurality, there were two sites categorized as rural 
or semi-rural (level 1), two sites as rural and urban mixed 
(level 2), and two sites as urban or semi-urban (level 3). 
For income level, three sites were categorized as from low 
income communities (level 1), and the remaining three, 
medium income (level 2). When assessing multi-collin-
earity, we determined that the two measures were only 
moderately correlated (Spearman’s ρ = 0.41). Step 2. We 
decided to balance linear trends and seasonal effects with a 
cycle of 4 timepoints. Step 3. We assigned equal weights to 
each site-level characteristic and further, equal weights on 
the linear and seasonal trends. Step 4. The overall imbal-
ance indices ranged from i0 = 0.060 to 0.687 among the 
720 permuted randomization sequences. Eight sequences 
tied for the lowest imbalance score of i0 = 0.060 and 
another eight tied for the second lowest imbalance score 
of i0 = 0.135. We randomly selected one of these sequences 
for the CARIBOU-2 trial. This maintained a reasonable 
level of uncertainty in the randomization process.

Discussion
Our results demonstrate that pre-balancing site-level 
covariates in SWCRTs can increase efficiency; the effi-
ciency loss is more pronounced when there is a learning 

effect vs. a constant effect in treatment efficacy. With the 
learning effect in place, the impact of sequential imbal-
ance is amplified due to the confounding between site 
level characteristics and time. This magnitude of the bias 
is diminished when the effect size, sample size, or num-
ber of study sites increase. All scenarios showed no bias. 
Sensitivity analyses demonstrated that these trends hold 
for alternative models including random effects on the 
treatment effect at the time, and time-by-cluster levels. 
However, not all of the estimation bias can be associated 
with covariate imbalance alone as pointed by Kenny et al. 
[26].

We also proposed a unified framework to assess 
sequential, non-linear, and seasonal imbalances in site-
level covariates. Our proposed imbalance indices are 
based on the (partial) correlation of the site-level covari-
ate with sequential, quadratic, or cyclical time of cross-
over. One advantage is that our proposed imbalance 
indices all range from 0 (perfectly balanced) to 1 (per-
fectly imbalanced). In comparison, the imbalance metrics 
proposed by Lew et al. (2019) do not have a fixed range. 
Our strategy for determining the overall imbalance index 
across multiple site-level covariates and imbalance types 
requires guidance from the study team to determine the 
covariates of interest, time-trends to balance, and the 
relative weight of these parameters. This strategy mirrors 
the approach by Lew et al.

Our study has a few limitations. Our simulations 
assumed that a single site would crossover to the active 
intervention per step. Larger SWCRTs may have multiple 
sites crossover at each timepoint. By having multiple sites 
crossover per timepoint may diminish the effect of site-
level covariate imbalances on estimation bias because 
the covariates would be averaged across multiple sites, 
thus reducing the random chance for imbalance. Our 
investigation focused on SWCRTs where the outcome is 
measured once per participant. We did not investigate 
an alternative design where participants would be fol-
lowed longitudinally as they crossover from the control 
to the active intervention. Our study focuses on estab-
lishing and examining the pre-balancing study through 
simulations; we did not perform a formal comparison of 
pre-balancing versus covariate-constrained or stratified 
randomization. We have assumed only an ordinal scale 
for the hypothesized site characteristics with three lev-
els (0, 1 and 2); this represents a highly varying effect size 
across sites. Smaller differences between sites or a con-
tinuous site characteristics may have different impacts on 
the findings.

Future research directions include examining the effect 
of: (1) non-linear and/or seasonal imbalances on estima-
tion bias; (2) continuous or ordinal site-level character-
istics with smaller differences between sites; (3) the bias 
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in larger SWCRTs with multiple sites crossing over per 
timepoint; (4) covariate-constrained randomization ver-
sus pre-balancing; and (5) longitudinal SWCRT designs. 
For smaller SWCRTs, where the chance for random 
imbalance of site-level covariates is higher, we recom-
mend investigators to carefully consider pre-balancing 
their covariates for sequential, non-linear, and/or sea-
sonal effects to prevent efficiency loss in estimation.

Conclusions
In summary, we have established a unified framework 
to quantify linear, non-linear, and seasonal imbalances 
of site-level characteristics in stepped-wedge cluster 
randomized trials. Our proposed balancing strategy 
will enable investigators to balance any combination 
of linear, non-linear, and seasonal trends. Our find-
ings highlight the importance of pre-balancing site-
level characteristics in order to minimize the potential 
for efficiency loss, especially for interventions with a 
learning effect.
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