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Abstract 

Background  Epidemiologic and medical studies often rely on evaluators to obtain measurements of expo-
sures or outcomes for study participants, and valid estimates of associations depends on the quality of data. Even 
though statistical methods have been proposed to adjust for measurement errors, they often rely on unverifiable 
assumptions and could lead to biased estimates if those assumptions are violated. Therefore, methods for detecting 
potential ‘outlier’ evaluators are needed to improve data quality during data collection stage.

Methods  In this paper, we propose a two-stage algorithm to detect ‘outlier’ evaluators whose evaluation results tend 
to be higher or lower than their counterparts. In the first stage, evaluators’ effects are obtained by fitting a regres-
sion model. In the second stage, hypothesis tests are performed to detect ‘outlier’ evaluators, where we consider 
both the power of each hypothesis test and the false discovery rate (FDR) among all tests. We conduct an extensive 
simulation study to evaluate the proposed method, and illustrate the method by detecting potential ‘outlier’ audiolo-
gists in the data collection stage for the Audiology Assessment Arm of the Conservation of Hearing Study, an epide-
miologic study for examining risk factors of hearing loss in the Nurses’ Health Study II.

Results  Our simulation study shows that our method not only can detect true ‘outlier’ evaluators, but also is less likely 
to falsely reject true ‘normal’ evaluators.

Conclusions  Our two-stage ‘outlier’ detection algorithm is a flexible approach that can effectively detect ‘outlier’ 
evaluators, and thus data quality can be improved during data collection stage.

Keywords  Evaluator, False discovery rate, Outlier detection, Quality control, Reviewer

Introduction
Many medical and epidemiological studies that inves-
tigate relationships between risk factors and disease 
outcomes rely on multiple evaluators (e.g. clinicians, 
technicians) to measure the exposures or outcomes of 

interest among study participants. For example, in large 
epidemiologic studies of hearing loss, pure-tone audi-
ometry measurements are typically obtained by multi-
ple audiologists or trained technicians in sound-treated 
booths [1–3]. Similarly, in large studies of vision, vision 
tests are often conducted by multiple evaluators in 
a clinic setting [4, 5]. Further, potential issues related 
to the collection of data by multiple evaluators may 
also extend to studies that rely on data collected by 
non-human testing methods, such as automated audi-
ometers [6], to obtain test measurements. Obtaining 
precise estimates of the association between risk fac-
tors and disease outcomes not only depends on the sta-
tistical methods used, but also the quality of data itself. 
Although many analytical methods have been proposed 
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to adjust for measurement errors arose from data col-
lected with poor quality, those methods typically rely 
on unverifiable assumptions [7], and pays a cost of the 
precision of estimates. Therefore, collecting data with 
better quality is preferred over using statistical meth-
ods to adjust for the biases induced by data of worse 
quality during statistical analysis stage. In this paper, 
we propose methods for quality control during data 
collection stage so that problems with the measure-
ments of exposures or outcomes can be discovered and 
addressed promptly.

Our work is motivated by the Conservation of Hear-
ing Study (CHEARS), an investigation of risk factors 
for hearing loss among participants in the Nurses’ 
Health Studies II (NHS II), an ongoing cohort study 
consisting of 116,430 registered female nurses in the 
US, aged 25-42 years at enrollment in 1989 [8]. The 
CHEARS Audiology Assessment Arm (AAA) assessed 
the longitudinal change in the pure-tone air and bone 
conduction audiometric hearing thresholds (the sound 
intensity of a pure tone at which it is first perceived) 
measured in decibels in hearing level, or dB HL, across 
the full range of conventional frequencies (0.5-8 kHz) 
[9]. Baseline testing was conducted on 3,749 women 
whose self-reported hearing status was either ‘excel-
lent’, ‘very good’ or had ‘a little hearing trouble’, and 
resided within proximity of one of 19 CHEARS test-
ing sites across the US [9]. The 3-year follow-up testing 
was completed on 3,136 participants (84%). In order to 
obtain reliable hearing measurements, detecting poten-
tial ‘outlier’ audiologists who tend to have higher or 
lower hearing test measurements than other audiolo-
gists is critical. Once an ‘outlier’ audiologist is identi-
fied, devices used by this audiologist can be examined 
and an early intervention can be carried out during the 
data collection stage if necessary. Moreover, this outlier 
information may have important implications for the 
approach of data analysis.

To the best of our knowledge, there are no existing sta-
tistical methods for detecting ‘outlier’ evaluators. In this 
paper, we develop an innovative two-stage algorithm for 
detecting ‘outlier’ evaluators. In the first stage, rather 
than directly evaluating the observed measurements, we 
extract evaluators’ effects on the measurements through 
regression analysis where the influences of other vari-
ables can be accounted for. In the second stage, we per-
form hypothesis tests to detect ‘outlier’ evaluators based 
on the estimated coefficients and variances from the first-
stage regression analysis.

The paper is organized as follows. In Section ‘Meth-
ods’, we present the two-stage algorithm to detect ‘out-
lier’ evaluators for scenarios when each study participant 
has either single or multiple measurements. In Section 

‘Simulation’, we perform a simulation study to investi-
gate the performance of our two-stage algorithm. Section 
‘Application’ presents a real data analysis to detect ‘out-
lier’ audiologists in the CHEARS AAA. The section ‘Dis-
cussion’ concludes the paper.

Methods
First stage regression
We first consider the scenario when each study partici-
pant only has one measurement to be obtained by an 
evaluator. Throughout the paper, we assumed that the 
exposure or test outcome of each study participant will 
be measured by only one evaluator, but one evaluator can 
measure multiple study participants. Let i ∈ {1, 2, . . . ,N } 
index the study participants; j ∈ {1, 2, . . . ,M} index the 
evaluators who measure the exposure or test outcome. 
Let nj denote the number of study participants who are 
evaluated by the j-th evaluator, such that M

j=1 nj = N .
To estimate the effects of evaluators on the meas-

urements, in the first stage, we fit the following linear 
regression:

where Yi is the measurement for the i-th study partici-
pant, T(j)

i  is an evaluator indicator which is 1 if the i-th 
study participant’s exposure or outcome is evaluated 
by the j-th evaluator, and 0 otherwise, X i is a p-dimen-
sional vector containing potential confounders for the 
evaluator-Yi relationship and predictors of Yi , and γ T is 
the transpose of the p-dimensional coefficient vector γ . 
We use T to denote the transpose of a vector or matrix 
throughout the paper. Without further specification, all 
vectors are column vectors throughout this paper. Note 
that the first stage regression can go beyond linearity, 
where some nonlinear forms of X i can be included for 
more accurate account of the effects of the covariates on 
the measurement. The regression coefficient βj repre-
sents the mean effect of evaluator j on the measurement 
after adjusting for X , and in the absence of ‘outlier’ evalu-
ators, βj , j = 1, . . . ,M , should be similar across different 
evaluators.

In practice, there may be multiple measurements for all 
or part of study participants. Let k ∈ {1, 2, . . . , ti} index 
the measurements for the i-th study participant. For 
example, in the CHEARS AAA, study participants have 
both ears tested by audiologists, and therefore we have 
ti = 2 for each participant at each frequency.

In the CHEARS AAA, the Pearson correlation coef-
ficients between the hearing test outcomes of the left 
and right ear are over 0.7 regardless of frequencies. 
To take into account the correlation between multiple 

(1)E(Yi|X i, T
(1)
i , . . . , T

(M)
i ) =

M∑

j=1

βjT
(j)
i + γ TX i,
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measurements while in the meantime being able to esti-
mate the mean effect of evaluators on the measurements 
after controlling for potential confounders, we propose 
to apply the Generalized Estimating Equations (GEE) 
method in the first-stage regression analysis to estimate 
the effects of evaluators [10, 11]. The model for the multi-
ple correlated measurements can be written as:

where Y i = [Yi,1,Yi,2, . . . ,Yi,ti ]
T , Cov(Y i) = �i , with �i 

being the unknown ti × ti variance-covariance matrix of 
the measurements of the i-th study participant, and Zi,k 
contains information that is specific to the k-th measure-
ment of the i-th study participant.

The parameters θ = [γ T ,βT
, ηT ]T , with β = [β1, . . . ,βM ]T , can be 

estimated by solving the following estimating equation 
[10, 11]:

where µi = E
[
Y i |X i ,Zi , T

(1)
i , . . . , T

(M)
i

] , Di =
∂
∂θ
µi(θ) , V i(θ ,α) is 

the working variance-covariance matrix, and α contains 
parameters characterizing the correlation structure 
between multiple measurements. Some common work-
ing correlation structures for k1  = k2 ∈ {1, . . . , ti} are 
independent, defined as Corr(Yi,k1 ,Yi,k2) = 0 ; exchangea-
ble, defined as Corr(Yi,k1 ,Yi,k2) = α , and unstructured, 
defined as Corr(Yi,k1 ,Yi,k2) = αk1,k2 . The variance of θ̂  , 
Var(θ̂) , can be estimated based on the sandwich variance 
estimator [10, 11].

The coefficients β1, . . . ,βM reflect evaluators’ effects on 
the measurements. An ‘outlier’ evaluator will have a dif-
ferent coefficient than the remaining ‘normal’ ones. Thus, 
in the second stage, we perform hypothesis tests to detect 
‘outlier’ evaluators based on estimated β̂ and V̂ar(β̂).

Hypothesis testing
In the second stage, we detect ‘outlier’ evaluators who 
give different measurements than their counterparts 
after adjusting for true predictors and confounders of the 
outcome. We now formally define ‘outlier’ evaluators as 
those evaluators whose effects on the measurements are 
different from the averaged effect among all the evalua-
tors in the study. Recall that βj , j = 1, . . . ,M represents 
the effect of the j-th evaluator on the measurements after 
controlling for study participants’ characteristics. ‘Out-
lier’ evaluators can be detected through testing whether 
evaluator effects on the measurements are statisti-
cally different from the mean effect averaged across all 

(2)

E
[
Yi,k |X i ,Zi,k ,T

(1)
i , . . . ,T

(M)
i

]
=

M∑

j=1

βjT
(j)
i + γ T

X i + ηTZi,k ,

(3)
M∑

i=1

DT
i (θ)V

−1
i (θ ,α)(Y i − µi(θ)) = 0,

evaluators. Therefore, for a given evaluator j, the hypoth-
esis can be formulated as:

which can be written as 
H0,j : L

T
j β = 0 v.s. H1,j : L

T
j β �= 0 , with

Note that, βj − 1
M

∑M
q=1 βq can be interpreted as the 

difference between the mean measurement of the j-th 
evaluator and the average mean measurements over all 
evaluators adjusting for the characteristics of the study 
participants being evaluated. The test statistic of the 
Wald χ2 test under the null hypothesis H0,j is [12]:

where �̂ is the estimated variance-covariance matrix of 
Var(β̂).

A more robust approach is to compute a truncated 
mean of the coefficients where potential ‘outliers’ can 
be prevented from contaminating the average effect. 
Let β(1),β(2), . . . ,β(M) be the ordered values of the 
regression coefficients. A δ × 100% truncated mean can 
be calculated as follows [13]:

where [x] denotes the integer part of x.
The null hypothesis that the j-th evaluator is not an 

‘outlier’ is now to compare the regression coefficient of 
the j-th evaluator to the δ × 100% truncated mean:

We refer the readers to Supplementary Material Sec-
tion  1 for techincal details on constructing the design 
matrix LTδ×100%,j to perform hypothesis testing in (8).

Since our goal is to detect as many potential ‘outlier’ 
evaluators as possible, we would like to achieve suf-
ficient power when the evaluators are true ‘outliers’. 
Therefore, to complete the hypothesis testing proce-
dure, different from the traditional approach where 
emphasis is placed upon controlling the type-I error 
α at an acceptable level, we also attach importance to 
ensuring an appropriate level of type-II error.

(4)

H0,j : βj −
1

M

M∑

q=1

βq = 0, j = 1, 2, . . . ,M. v.s. H1,j : βj −
1

M

M∑

q=1

βq �= 0

(5)

Lj =


− 1

M − 1
M . . .

M − 1

M� �� �
j-th location

− 1
M . . . − 1

M



T

.

(6)
(
LTj β̂

)T [
LTj �̂Lj

]−1(
LTj β̂

)
D
−→ χ2

1 ,

(7)βtruncated =
1

M − 2[M · δ]

M−[M·δ]∑

q=[M·δ]+1

β(q),

(8)H0,j : βj − βtruncated = 0, j = 1, 2, . . . ,M.
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Type‑I error determination
Ideally, when performing hypothesis tests to detect 
potential ‘outlier’ evaluators, there is sufficient power to 
reject the null hypotheses H0,j when a pre-specified 
alternative hypothesis H1,j is true. Denote the pre-spec-
ified alternative hypothesis as H1,j :

∣∣∣LTj β
∣∣∣ = c , where c 

can be determined based on subject matter knowledge. 
For instance, in the CHEARS AAA, the ‘hearing thresh-
old’ for each individual ear is measured by the lowest 
sound intensity of a pure-tone signal presented individ-
ually to each ear, to which the listener reliably responds, 
and the pure-tone signal was measured in 5-dB steps 
[9]. As a result, hearing loss was defined as a greater 
than 5-dB HL increase in the pure-tone averages of 
testing frequencies at low-frequency (0.5, 1, 2 kHz), 
mid-frequency (3, 4 kHz), and high-frequency (6, 8 
kHz) [9]. Therefore, it is important to identify audiolo-
gists who consistently gave 5-dB larger or smaller hear-
ing test results than their counterparts after controlling 
for study participants’ characteristics. Thus, a reasona-
ble value for the alternative hypothesis for which we 
hope to have sufficient power to detect is c = 5 for the 
CHEARS AAA. For presentational simplicity, we do 
not distinguish between Lj and Lδ×100%,j in this section, 
and we use Lj to denote the contrast matrix of both 
tests.

In general, the power formula for the hypothesis test: 
H0,j : L

T
j β = 0 v.s. H1,j :

∣∣∣LTj β
∣∣∣ = c is:

where α is a two-sided type-I error rate, and φ is the 
power of the test.

Under alternative hypothesis, test statistic 
(
L
T
j β̂

)T [
L
T
j �̂Lj

]−1(
L
T
j β̂

) follows a noncentral χ2 distribution 
with one degree of freedom and noncentral parameter 
�j =

c2

LTj �̂Lj
 [14]; we denote this distribution as χ2

1 (�j) . Let 

Fχ2
1 (�j)

 be the cumulative distribution function of χ2
1 (�j) . 

It follows that the power of the test under the significance 
level α and alternative hypothesis H1,j :

∣∣∣LTj β
∣∣∣ = c is

To ensure sufficient power for each evaluator at a pre-
specified alternative hypothesis, we can first fix the 
power φ of the tests, and solve Eq. (10) to obtain the cor-
responding significance levels αj(φ) for rejecting the null 
hypothesis H0,j : L

T
j β = 0 . Under the same power and 

alternative hypothesis, each evaluator has an evaluator-
specific significance level instead of a unified one due to 
the differences in the estimated variances of the coeffi-
cient estimates.

(9)P

((
L
T
j β̂

)T [
L
T
j �̂Lj

]−1(
L
T
j β̂

)
> χ2

1,1−α

∣∣∣
∣∣∣LTj β

∣∣∣ = c

)
= φ,

(10)φ = 1− Fχ2
1 (�j)

(χ2
1,1−α).

False discovery rate estimation
The null hypotheses that we are testing are 
H0,1,H0,2, . . . ,H0,M . Due to multiple testing, using a tra-
ditional significance level such as 0.05 in each test may 
lead to a high rate of finding ‘outlier’ evaluators even if 
they are ‘normal’ ones (i.e. making false discoveries) [15, 
16]. In our setting, since the evaluator-specific signifi-
cance levels are determined by ensuring a pre-specified 
power of the tests, we are more likely to make false dis-
coveries than the traditional α-level hypothesis tests 
when the pre-specified power is large. To protect us from 
falsely classifying too many ‘normal’ evaluators as ‘outli-
ers’, we propose to adopt the concept of the false discov-
ery rate (FDR) [15] to control the rate of making false 
positive decisions.

We provide an approximation of FDR by:

where Q is defined as the proportion of true null hypoth-
eses being fasely rejected among the total rejected null 
hypotheses and we refer the readers to Supplementary 
Material Section 2 for technical details.

Note that, in our approach, instead of using a unified 
significance level for all tests, such as α = 0.05 , each 
null hypothesis has its own evaluator-specific signifi-
cance level such that a pre-specified power for detect-
ing a pre-specified alternative hypothesis is achieved for 
all the hypothesis tests. The estimated FDR, Ê(Q;φ) , on 
the other hand, can inform us of the number of false dis-
coveries that may be made. Therefore, when choosing an 
appropriate set of significance levels, apart from ensuring 
sufficient power for the tests, the estimated FDR can be 
used as another criterion reflecting our tolerance towards 
making false discoveries.

FDR vs. Power decision plot
As described in previous sections, for a given power, we 
could solve Eq. (10) to get the corresponding evaluator-
specific significance levels for rejecting the null hypoth-
eses H0,j , j = 1, . . . ,M , and based on these significance 
levels, the corresponding FDR can be estimated using Eq. 
(11). Therefore, the relationship between power and FDR 
can be reflected by a decision plot where the power ( φ ) 
is on the x-axis, and the corresponding estimated FDR 
( ̂E(Q,φ) ) is on the y-axis. Based on the decision plot, we 
can pick up the significance levels at which an acceptable 
trade-off between power and the FDR is achieved.

We could also first select a relatively low FDR and find 
the corresponding power along with the evaluator-spe-
cific significance levels from the decision plot; we can 

(11)Ê(Q;φ) =

∑M
j=1 αj(φ)∑M

j=1 I(pj < αj(φ))
,
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then reject the null hypotheses with p-values of the tests 
less than the thresholds. Alternatively, if we are less con-
cerned about making false discoveries but would like to 
be able to detect as many potential ‘outlier’ evaluators 
as possible, then we could first specify a relatively large 
power, and reject the null hypotheses by comparing the 
p-values with the corresponding evaluator-specific sig-
nificance levels; the estimated FDR from the decision 
plot can inform us of the number of false discoveries we 
might have made.

FDR‑based adjustment
We may further adjust the set of rejected null hypotheses 
based on the estimated FDR, especially when Ê(Q; φ̃) is 
large under the chosen power φ̃ .

Let R be the set of the rejected null hypotheses, and k 
be the number of hypotheses in R . Denote the rejected 
hypotheses as H0,(1),H0,(2), . . . ,H0,(k) , where they are 
ordered by their p-values in an ascending order. Since 
Ê(Q; φ̃)× k approximates the expected number of true 
null hypotheses that are falsely rejected among 
H0,(1),H0,(2), . . . ,H0,(k) , an ad hoc approach to further 
adjust the rejected null hypotheses based on the esti-
mated FDR is to move the latter ⌈Ê(Q; β̃p)× k⌉ null 
hypotheses H

0,(k−⌈Ê(Q;β̃p)×k⌉+1)
, . . . ,H0,(k) out of set R , 

where ⌈x⌉ rounds x to the nearest integer. Finally we 
would only reject H0,(1),H0,(2), . . . ,H0,(k−⌈Ê(Q;β̃p)×k⌉)

 , and 
the corresponding ‘outliers’ are evaluators 
(1), (2), . . . , and (k − ⌈Ê(Q; β̃p)× k⌉) . An algorithmn 
statement that summaries the complete quality control 
procedure is provided in Supplementary Material 
Section 3.

Simulation
We perform a simulation study to assess the proposed 
quality control procedure for detecting ‘outlier’ evalu-
ators. As a demonstration, we base our simulations on 
the audiometrically-assessed hearing threshold meas-
urements at 8 kHz that were obtained in the CHEARS 
AAA in 2014, where 3,568 participants had assessments 
in both ears that were measured by 68 different licensed 
audiologists. Note that, the AAA was still in data collec-
tion stage in 2014, and detecting the ‘outlier’ audiologists 
would help investigators make prompt adjustment to 
obtain accurate measurements for tests conducted after-
wards. We evaluate the performance of the proposed 
FDR estimator in Eq. (11), as well as true positives (suc-
cessfully detecting true ‘outlier’ evaluators) and false pos-
itives (falsely classifying ‘normal’ evaluators as ‘outliers’) 
yielded by our quality control method compared with 
using a traditional and unified significance level such as 
α = 0.05 to reject the null hypotheses.

Data generation
We first consider the scenario when evaluators measure 
a single outcome for each study participant. We generate 
data based on the model below, mimicking the right ear 
data obtained from the CHEARS AAA:

where age is generated from a normal distribution with 
mean 56.6 years and standard deviation (SD) 4.4; we set 
the ‘excellent’ self-reported hearing status as the refer-
ence group and the prevalences of the other two cat-
egories ‘very good’ and ‘a little hearing trouble’ were 
0.44 and 0.25, respectively. These values are the same as 
those in the CHEARS AAA. Audio(j)i , j = 1, . . . ,M , is 1 if 
the hearing test outcome of the i-th study participant is 
measured by the j-th audiologist, and 0 otherwise.

The coefficients corresponding to age, age2 , I(very 
good), and I(a little hearing trouble) are set to be 
γ1 = −2.7 , γ2 = 0.03 , γ3 = 3.3 and γ4 = 10.3 , same 
as the point estimates from the regression analysis 
on the CHEARS data. The number of audiologists M 
are set to be 100, and each measures the hearing out-
comes on 40 study participants. We set the coefficients 
as β1 = β2 = . . . = β5 = 75 , β6 = β7 = β8 = 70 and 
β9 = β10 = . . . = β100 = 67 . Since the averaged audiolo-
gist effect is approximately 67, the 92 audiologists with 
true effect 67 are considered as ‘normal’ audiologists, and 
the 3 audiologists with effect 70 and the 5 with effect 75 
are considered as true outliers. Note that, here, five ‘out-
lier’ audiologists have very different effects on the hear-
ing test outcomes from ‘normal’ audiologists and three 
‘outlier’ audiologists are slightly different from ‘normal’ 
audiologists. The values 75 and 67 are determined by the 
averages of the estimated regression coefficients in the 
regression analysis on the CHEARS data for the audiolo-
gists in the upper 10th percentile and those between the 
lower and upper 10th percentiles, respectively. The resid-
ual ǫi is assumed to be normally distributed with mean 
0 and standard deviation (SD) σ = 8, 10, 12 , respectively.

Simulation results
The simulation is performed for 300 replicates. Shown in 
Fig. 1 are the FDR vs. Power decision plots under differ-
ent standard deviation (SD) of the residuals. We set the 
alternative hypothesis as H1,j :

∣∣∣LT10%,jβ
∣∣∣ = 5 . The solid 

curve is the estimated FDR based on Eq. (11) averaged 
over the 300 simulation replicates under powers ( φ ) rang-
ing from 0.1 to 0.95 with step size of 0.01; a loess curve 
with the default smoothing span 0.75 is fitted to connect 

(12)

Yi = γ1agei + γ2age
2
i + γ3I(very goodi)

+ γ4I(a little hearing troublei)+ β1Audio
(1)
i + β2Audio

(2)
i

+ . . .+ βMAudio
(M)
i + ǫi ,
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the points. The dashed curve is an empirical version of 
the true FDR, which for each φ , is the ratio of the number 
of ‘normal’ audiologists (Audiologists 9 - 100) being 
falsely detected as ‘outlier’ audiologists to the total num-
ber of detected ‘outlier’ audiologists, averaged over the 
300 simulation replicates. The horizontal dot-dash line is 
the empirical version of the true FDR if we use α = 0.05 
as the significance level for rejecting the null hypotheses 
averaged over the 300 simulation replicates.

As shown in the decision plot, the estimated FDR is 
very close to the true FDR when σ = 8 and 10 ; while 
it slightly overestimate the true value when σ = 12 . 
Moreover, as the SD of the residual increases, the FDR 
also increases. For example, when σ = 8 , the FDR is 
less than 0.165 under power 0.95, while if σ increases to 
12, the FDR is greater than 0.8 under the same power. 
Define the noise ratio as σ 2

Var(Y )
 , which is the propor-

tion of the variance of the residual among the total 

variance of the outcome measurement. The correspond-
ing noise ratios are approximately 0.52, 0.64, and 0.72 for 
σ = 8, 10 and 12 . When the noise ratio increases, we are 
more likely to make false discoveries. Therefore, when 
performing quality control, including all the possible pre-
dictors and confounders in the first stage regression is 
crucial; this way, we can minimize the residual of the first 
stage regression and, as a result, minimize the FDR.

Compared with an approach that uses a fixed signifi-
cance level α = 0.05 , our method enjoys more flexibility 
since we can choose the evaluator-specific significance 
levels by considering both the power and FDR. When 
σ = 8 , under any power, our approach has a much lower 
FDR than using α = 0.05 as the threshold; and when 
σ = 10 and 12 , even though the FDR increases, it is still 
smaller than the FDR if using α = 0.05 as the threshold, 
when the power is chosen to be less than 0.8 and 0.75, 
respectively.

Fig. 1  FDR vs. Power decision plot for single measurement simulation. The alternative hypothesis is H1,j :

∣∣∣LT10%,jβ
∣∣∣ = 5 . The solid curve 

is the estimated FDR based on Eq. (11) averaged over 300 simulation replicates, and the dashed curve is the empirical true FDR calculated 
by averaging the proportions of false discoveries V(φ)

R(φ)
 over 300 simulation replicates. The black horizontal dot-dash line represents the empirical true 

FDR calculated by averaging the proportions of false discoveries over 300 simulation replicates when using α = 0.05 as the significance level. The 
solid and dashed curves are overlapped on the top panel
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Since the goal of the method is to detecting as many 
potential ‘outlier’ evaluators as possible while making the 
type-I error rate under an acceptable level, we define the 
true positive proportion for each true ‘outlier’ audiologist 
(i.e., Audiologists 1 to 8) as the proportion of simulation 
replicates that correctly detect the audiologist as an ‘out-
lier’ over the 300 simulation replicates, and the false posi-
tive proportion for each true ‘normal’ audiologist (i.e., 
Audiologists 9 to 100) as the proportion of simulation 
replicates that falsely identify the audiologist as an ‘out-
lier’ over the 300 simulation replicates. Figure  2a and  b 
show the true positive proportions for Audiologists 1 to 
8, and false positive proportions for the ‘normal’ audiolo-
gists (For illustration, we select Audiologists 9 to 16.), 
where σ = 8 when generating the data, and the alterna-
tive hypothesis is set as H1,j :

∣∣∣LT10%,jβ
∣∣∣ = 5 . The black 

points are the proportions based on our quality control 
procedure under different powers of the tests; while the 
horizontal dotted lines are the proportions calculated 
using α = 0.05 as the threshold for rejecting the null 
hypotheses. We consider both the unadjusted procedure 
and the FDR-based adjusted procedure.

For the unadjusted procedure, as the power increases, 
the true positive proportions for Audiologists 1 to 5 reach 
to 1 quickly, which is expected since the difference 
between their coefficients and those of the ‘normal’ audi-
ologists are set to be 8, greater than the difference used in 
the alternative hypothesis H1,j :

∣∣∣LT10%,jβ
∣∣∣ = 5 . However, 

for Audiologists 6 to 8, since their coefficients are only 3 
larger than the ‘normal’ audiologists, the true positive 
proportions are far less than 1 even when the power is 
large. Compared to the approach that uses α = 0.05 as 
the threshold, our quality control procedure has smaller 
true positive proportions when the power of test is 
smaller than 0.3, 0.6, 0.7 for σ = 8, 10, 12 , but gradually 
they will increase to approximately the same or even 
higher level. For the ‘normal’ audiologists (Audiologists 9 
to 16), the false positive proportions are approximately 
0.05 if using α = 0.05 as the threshold. Our quality con-
trol procedure has even smaller false positive proportions 
when σ = 8 and 10 under nearly every power considered. 
When σ = 12 , the false positive proportions are still 
smaller than those from using α = 0.05 as the threshold, 
if the power is no larger than 0.9.

Compared with the unadjusted procedure, the FDR-
based adjusted true positive proportions for the true 
‘outlier’ audiologists and false positive proportions for 
‘normal’ audiologists do not change much in the case 
of σ = 8 since the FDR is small, and the adjustment is 
minor. As σ increases, for example, when σ = 10 , the 
FDR is large enough to yield sufficient number of adjust-
ments for power larger than 0.75. Apart from a decrease 

in the false positive proportions for the true ‘normal’ 
audiologists (Audiologists 9 to 16), we also observe a 
decrease in the true positive proportions for the true ‘out-
lier’ audiologists (Audiologists 1 to 8). Therefore, the ad 
hoc FDR-based adjustment helps to reduce the chances 
of making false discoveries, with a price of a reduction in 
the probability of making true positive decisions.

Moreover, we also conducted a simulation study for the 
scenarios when outcomes are correlated. The data gen-
eration process and simulation results are presented in 
Supplementary Material Section 1. The simulation results 
are similar with the single measurement scenarios; our 
outlier detection procedure typically has lower false posi-
tive proportions for the true ‘normal’ audiologists and 
higher true positive proportions for the true ‘outlier’ 
audiologists compared with the approach that fix the sig-
nificance level at α = 0.05.

Application
To illustrate our method, we apply our method to detect 
‘outlier’ audiologists for the audiometrically-assessed 
hearing threshold measurements in the CHEARS AAA 
collected in 2014, when the baseline testing was com-
pleted on 3,749 participants. We focus on the test results 
at 8 kHz. We use the GEE approach in the first stage 
regression analysis and we include age, age2 , self-reported 
hearing status (‘excellent’, ‘ very good’ and ‘a little hearing 
trouble’), and dummy variables for the 68 audiologists in 
the regression model. This regression is fitted using SAS 
proc genmod, assuming an exchangeable working vari-
ance-covariance structure.

We display the scatter plots of β̂i − 1
M

∑M
q=1 β̂q and 

β̂i −
1

M−2[M·δ]

∑M−[M·δ]
q=[M·δ]+1 β̂(q) , with M = 68, δ = 0.1 , 

in Fig.  3. Regardless of whether we are comparing with 
the untruncated mean or the 10% truncated mean, the 
plots are similar. As shown in Fig. 3a and b, Audiologist 
13 has a much larger ( > 10 dB ) coefficient estimate than 
their counterparts, and Audiologist 4 has a much smaller 
( < 10 dB ) coefficient estimate than the rest of the audi-
ologists. Moreover, Audiologists 14, 15, 22, 47, 48, 54, 55 
and 59 have a mildly different (5-10dB ) coefficient esti-
mates from the average effect.

Figure 4a to d show the FDR vs. Power decision plots, 
where the hypothesis tests are performed to compare 
each audiologist’s regression coefficient with both the 
untruncated mean and the 10% truncated mean. We fix 
the alternative hypothesis as H1,j :

∣∣∣LTj β
∣∣∣ = 5 and 10 , and 

H1,j :
∣∣∣LT10%,jβ

∣∣∣ = 5 and 10 , respectively, for j = 1, . . . , 68 . 
Based on the decision plots, ‘outlier’ audiologists can be 
detected by choosing an appropriate set of significance 
levels that correspond to reasonable power and FDR. The 
results are similar between the untruncated mean and 
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A

B

Fig. 2  This figure shows the true positive proportions for the true ‘outlier’ audiologists and false positive proportions for the true ‘normal’ 
audiologists for single measurement simulation with σ = 8 . The top panel in each subfigure is the result by performing the FDR-based adjustment, 
while the bottom panel in each subfigure is the result without FDR-based adjustment. The horizontal dot-dash line represents the corresponding 
true or false positive proportion for each audiologist if we use α = 0.05 as the significance level for rejecting the null hypotheses
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A

B

Fig. 3  a Subtracting each audiologist’s coefficient estimate by the untruncated mean of all audiologists’ coefficient estimates,; b Subtracting each 
audiologist’s coefficient estimate by the 10% truncated mean of all audiologists’ coefficient estimates
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truncated mean approach. Table 1 summarize the results 
when setting the power at 0.8 or the estimated FDR at 
0.5. As shown in the table, Audiologists 4 and 13 are 
detected as ‘outliers’ by all of the approaches regardless of 
the power, FDR or the alternative hypothesis considered, 
and Audiologist 48 is detected by all of the approaches 
under the alternative hypothesis H1,j :

∣∣∣LT10%,jβ
∣∣∣ = 5 and 

H1,j :
∣∣∣LTj β

∣∣∣ = 5 . Therefore, Audiologists 4, 13 and 48 are 

likely to be ‘outlier’ audiologists, suggesting close scrutiny 
may be merited. However, for the approach of using 
α = 0.05 to reject the null hypotheses as shown in the 
last two rows of the tables, apart from being not flexible 
as compared with our method, it also suffers from the 
problem that the power of tests for different audiologists 
varies significantly with a minimum of 0.55 and a maxi-
mum of 1.00.

A B

C D

Fig. 4  FDR vs. Power decision plot for detecting ‘outlier’ audiologists, where a: H1,j :

∣∣∣LT10%,jβ
∣∣∣ = 5 ; b: H1,j :

∣∣∣LT10%,jβ
∣∣∣ = 10 ; c: H1,j :

∣∣∣LTj β
∣∣∣ = 5 ; and d: 

H1,j :

∣∣∣LTj β
∣∣∣ = 10 . The dot-dash and dashed lines are produced by fixing power at 0.8 or the FDR at 0.5, respectively
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Discussion
In this paper, we propose a novel method to address a 
common issue in large epidemiologic studies that rely 
on multiple evaluators to obtain exposure or outcome 
measurements to optimize data quality during data col-
lection stage. Specifically, we developed a two-stage 
algorithm to detect ‘outlier’ evaluators, who may tend 
to have higher or lower measurements than those of 
their counterparts. In the first stage, we fit a regres-
sion model for the measurements against evaluators 
and study participants’ characteristics that could pre-
dict the measurements. In the second stage, based on 
the regression coefficients in the first stage, we perform 
hypothesis tests to compare the mean measurement of 
each evaluator with the average mean measurements 
over all evaluators adjusting for the characteristics of 
the individuals evaluated. Different from the tradi-
tional hypothesis testing procedure where controlling 
type-I error is the primary focus, we also attach equal 
importance to ensuring an appropriate level of type-II 
error since our goal is to detect as many potential ‘out-
lier’ evaluators as possible for quality control purpose. 
We derive the evaluator-specific significance levels for 
rejecting the null hypotheses under selected powers of 
the tests. These significance levels are not necessarily 
0.05 and are different across audiologists due to the dif-
ferences in the variances of the coefficient estimates. To 
account for the issue of multiple comparisons, we also 
derive an FDR-estimator. An FDR vs. Power decision 

plot can be created, and based on this plot, the evalu-
ator-specific significance levels for rejecting the null 
hypotheses can be determined such that both FDR and 
Power are acceptable.

When performing hypothesis tests to detect ‘outlier’ 
evaluators, we proposed to compare the coefficient 
estimates to the truncated mean to prevent those ‘out-
lier’ evaluators from contaminating the estimated nor-
mal effect. Alternatively, we can consider an interval 
null, that is H0 : |βi −

1
M

∑M
j=1 βj| ≤ a for some con-

stants a > 0 . A challenge of this method might be how 
to select a. We will consider this method in our future 
research and compare it with the current method. 
Moreover, when calculating the evaluator-specific 
significance level, the knowledge of the alternative 
hypothesis is needed. However, if the prior knowledge 
is not available, we recommend performing sensitivity 
analysis for a series of reasonable values of the alterna-
tive hypothesis. In addition, the FDR approximation 
in Eq. (2) holds when the number of hypotheses (M) 
being conducted is large. However, when M is small, 
alternatively, we can use the Benjamini-Hochberg (BH) 
procedure to control the FDR [15]. The BH procedure 
proceeds by first specifying an FDR level α , and sort 
the null hypothesis based on p-values in ascending 
order ( P(1),P(2), . . . ,P(M) ). Then the largest k such that 
P(k) ≤

k
Mα is obtained, and the first k null hypotheses 

will be rejected. The BH procedure can ensure that the 
FDR is controlled at level α . However, different from 

Table 1  Detected ‘outlier’ audiologists from AAA of CHEARS. Each audiologist’s coefficient estimate is compared with the 10% 
truncated mean of all audiologists’ coefficient estimates

To compare the results to standard practice where 0.05 is used as the significance level, last row reports the results from using α = 0.05 as the threshold for rejecting 
tests H0,1, . . . ,H0,68 , where 68 is the number of audiologists in AAA of CHEARS; The range of the power of these 68 hypothesis tests under α = 0.05 was reported in 
the Power column.
a  When we compare the coefficient estimates to the untruncated mean, an additional Audiologist 59 is detected;
b  An additional Audiologist 22 is detected after the FDR correction when we compare the coefficient estimates to the untruncated mean. For other situations, using 
the untruncated mean for comparison yields the same results as using the truncated mean

Alternative Power F̂DR Outlier Audiologists Outlier 
Audiologists 
Corrected by FDR

H1,j :
∣∣L10%,jβ

∣∣ = 5 0.80 0.72 2, 4, 8, 13, 14, 15, 16, 17, 4, 13, 16, 41, 48

22, 24, 28, 36, 39, 41, 42, 47,

48, 49, 52, 54, 55, 57, 58, 59

H1,j :
∣∣L10%,jβ

∣∣ = 5 0.47 0.50 4, 13, 14, 15, 4, 13, 48b

22, 48, 54, 55a

H1,j :
∣∣L10%,jβ

∣∣ = 10 0.80 0.44 4, 13, 14, 55 4, 13

H1,j :
∣∣L10%,jβ

∣∣ = 10 0.86 0.50 4, 13, 14, 22, 55 4, 13

- (0.55, 1.00) 0.28 4, 13, 15, 16, 17, 22, 4, 13, 16, 22,

24, 40, 41, 45, 48, 63 24, 40, 41, 48, 63
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our approach, the BH procedure does not consider the 
power of tests and to be conservative, we might use a 
relatively larger α level such as 0.1 when conducting the 
BH procedure.

There are several important points for consideration 
based on our work. First, an increase in the noise ratio 
σ 2

Var(Y )
 will increase FDR, especially when the power of 

the test is large. Therefore, in the first stage regression, it 
is crucial to include all potential predictors of the meas-
urements as regressors. Second, the proposed method 
assumes that the evaluator effect on the measurements 
is not modified by the participants’ characteristics. In 
the case when this assumption is violated, we can esti-
mate the evaluator effect in each category of the potential 
effect modifier by including the evaluator indicator-effect 
modifier interactions in the first stage regression model, 
and then we can regard the same evaluator for testing 
study participants in different categories of the effect 
modifier as if they were different evaluators. This way, 
an evaluator could be detected as an ‘outlier’ only when 
testing study participants in a specific category of the 
effect modifier. Third, to accommodate situations where 
the measurements are not continuous, a link function 
can be used in the first stage regression, such as the logit 
link for binary measurements, and log link for count 
measurements.

Our quality control procedure is used to detect poten-
tial ‘outlier’ evaluators and once they are detected, qual-
ity check on those evaluators should be performed to 
ensure future measurements can be measured accurately. 
However, a correction of measurement errors in existing 
measurements obtained by ‘outlier’ evaluators is beyond 
the scope of this paper. We will develop measurement 
error correction methods in future research; one idea 
could be to calibrate the measurements from ‘outlier’ 
evaluators to ‘normal’ measurements using informa-
tion from the first-stage regression models, taking into 
account participants’ characteristics.

The regular regression and GEE approach may not lead 
to reliable β-estimator if the numbers of study partici-
pants tested by some evaluators are small. In this case, an 
alternative method is to treat the measurements from the 
same evaluator as a cluster and to use the mixed effects 
model in the first stage regression analysis. In the sce-
nario where each participant has a single measurement, 
this mixed effects model may include an evaluator-spe-
cific random intercept in addition to the fixed effect par-
ticipants’ characteristics; the estimated value of the j-th 
evaluator-specific intercept is β̂j . Similarly, in the scenario 
where the participants have multiple measurements, the 
mixed effects model may include both evaluators and 
participants (nested within evaluator) as random effects. 
Once the mixed effects model obtains β̂ and V̂ar(β̂) , the 

rest of the methods are the same as those stated in Sub-
section ‘Hypothesis testing’ to Subsection ‘FDR-based 
adjustment’ of this paper.

In addition to the contribution to quality control dur-
ing the data collection stage of epidemiologic studies, our 
outlier detection method can also be valuable in clini-
cal settings for the detection of ‘outlier’ evaluators (e.g. 
health providers or technicians); for example, clinical 
diagnoses often rely on measurements from evaluators, 
and inaccurate measurements may lead to wrong diagno-
ses. Furthermore, our method can be used in statistical 
analysis procedures. For example, for studies based on 
laboratory measurements of biomarkers such as plasma 
or urine metabolites that are measured in different 
batches, our method can help to identify potential ‘out-
lier’ batches, and a sensitivity analysis can be conducted 
by excluding those ‘outlier’ batches and re-estimating the 
parameters of interests.

R code for implementing the proposed method is avail-
able at https://​github.​com/​molin​wang/​Analy​tical-​Metho​
ds-​for-​Heari​ng-​Studi​es/​branc​hes.

Conclusions
Our two-stage algorithm is a useful method for detect-
ing ‘outlier’ evaluators who tend to give higher or lower 
measurements than their counterparts after adjusting for 
study participants’ characteristics. Compared with tradi-
tional hypothesis tests that focus on type-I error, we also 
attach importance to the type-II error so that as many 
potential ‘outliers’ can be identified, and an estimated 
FDR is used to control for the false positive rate. We rec-
ommend applying our method for ‘outlier’ detection dur-
ing data collection stage to improve data quality.
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